
Covert Message Channels and Attack Vectors for

IEEE Precision Time Protocol

Luke Jacobs *, Casimer DeCusatis *, Paul Wojciak **, Clay Kaiser **, and Steve Guendert **

* Marist College, Poughkeepsie, NY

** IBM Corporation, Poughkeepsie, NY USA

Abstract— The IEEE 1588 standard, known as Precision Time

Protocol (PTP), is an emerging candidate for high precision

timing and clock distribution networks. We present experimental

results from a PTP test bed that demonstrate new types of covert

channel communications, which allow PTP protocol to be used

for data exfiltration and other network communication that

violates the implemented cybersecurity policy. We then expand

upon this work to demonstrate two new zero-day vulnerabilities

in the PTP protocol, and develop proof-of-concept exploits for

these attacks. In one attack, we demonstrate a novel man-in-the-

middle (MITM) packet injection exploit against the PTP network

that produces large, incorrect timing offsets at PTP timeReceiver

nodes. In a second attack, we demonstrate the use of specific

meta-data payloads to generate large time Transmitter (i.e.

master clock) offsets, and to manipulate not just the clock offset

but the actual clock frequency itself. We also investigate

proposed mitigation techniques, including the use of NTS secured

NTP with PTP concurrently which is suggested by some of our

experimental results using Timemaster.

Keywords—PTP, NTP, timing, cybersecurity

Introduction

1. Introduction

 The IEEE 1588 standard, known as Precision Time

Protocol (PTP) [1], is an emerging candidate for high

precision timing networks, including clock distribution and

synchronization. It is a follow-on to the widely used Network

Time Protocol (NTP) [2] in applications which require

enhanced timing performance. Many enterprise-class data

centers, telecommunications back haul systems, cloud service

providers, high performance computing applications, and

others rely on a timing subsystem that is used to synchronize

networked servers and other data processing equipment.

Theoretically NTP can achieve timing accuracy of up to 1 ms,

although in practice accuracies of tens to hundreds of ms are

fairly common. Recently, a need for more accurate time

synchronization has emerged. According to recent regulatory

requirements in the financial sector [3,4], servers must be

synchronized to within 50 - 100 millisecond drift tolerance of

the NIST atomic clock, while proposed standards call for

tolerances as low as 1 microsecond in some applications.

These timing synchronization requirements are significantly

lower than a standard NTP implementation can achieve. While

some vendors have developed proprietary timing protocols

that partially address these needs, they require additional

wiring infrastructure that can be costly and problematic to

deploy, and are often incompatible with extended distance

fiber optic wavelength multiplexing links and software-

defined network (SDN) controllers. Thus, there is a strong

desire to design future timing networks around an open

industry standard clock protocol with improved accuracy, such

as the PTP protocol. In a previous paper [5], we described

three security vulnerabilities in the current release of PTP, and

discussed potential mitigation techniques.

 In this paper, we present experimental results from a PTP

test bed that demonstrate new types of covert channel

communications, which allow the PTP protocol to be used for

data exfiltration and other network communications that

violate the implemented cybersecurity policy. We then

expand upon this work to demonstrate two new zero-day

vulnerabilities in the PTP protocol, and develop proof-of-

concept exploits for these attacks. In one attack, we

demonstrate a novel man-in-the-middle (MITM) packet

injection exploit against the PTPv2 network which is used to

produce large, incorrect timing offsets at PTP timeReceiver

nodes. In a second attack, we demonstrate the use of specific

meta-data payloads to generate large timeTransmitter clock

offsets (i.e. master clock; note that at the time of this writing,

IEEE standard notation for PTP4L systems as used in this

testing refers to the master clock, while emerging standards

plan to use timeTransmitter notation for this feature; in order

to avoid confusion, we have been advised to continue using

the master clock notation for this paper). Further, we can

manipulate not just the clock offset but the actual clock

frequency itself. We also discuss proposed mitigation

techniques for these vulnerabilities.

2. Covert channels in PTPv2

 A covert channel refers to a communication path used to

transfer information between processes that are normally not

allowed to communicate with each other under the current

cybersecurity policy. Since a covert channel was not designed

for communication, it often exhibits low data rates and lacks

features normally associated with a communication channel,

such as redundancy, retransmission, or error

detection/correction capabilities. Despite these drawbacks,

covert channels are widely used to circumvent cybersecurity

policies, for example to exfiltrate stolen data or to install and

update malware. Ideally covert channel communication is

difficult or impossible to detect by other processes, and does

not obviously impede normal system operation. Meta-data

fields of many popular network protocols can be used as

covert channels; prior documented examples include covert

channels within DNS, ICMP, NTP, and others [6].

 In this paper, we investigate several approaches to

implementing covert channels using PTP. In particular, the

accuracy of clock synchronization over packet networks is

highly sensitive to delay jitter in the underlying network,

which dramatically affects clock accuracy. To address this,

PTP defines transparent clocks (TCs), i.e. switches and routers

that improve end-to-end clock accuracy by updating a

“correction field” in the PTP packet header. A transparent

clock is a PTP node with more than one port which doesn’t

participate in the Best TimeTransmitter Clock Algorithm

(BTCA), such as a stateless switch. PTP data frames are

forwarded through a TC, and their resident time is added to

the correction field in the frame header. The correction field

thus contains the latency caused by the current TC, and can be

used to compensate for delays due to queuing, processing

time, and propagation delays. PTP does not specify how the

information from the correction field is to be used to

accomplish clock synchronization; this is determined by other

timing profile rules [7]. The correlation field is a 64-bit

integer, but the PTP standard does not specify whether the

length or data type should be validated; there is also no

standard approach to determining whether the correlation field

is in use or not. There is no corresponding field in the NTP

protocol. Since it is possible to modify the contents of the

correction field without significantly impacting normal PTP

protocol operation, this field is a good potential candidate for

use as a covert channel.

3. Experimental Results

 Our PTP testbed spans two environments, namely the

Marist College enterprise computing research lab (ECRL) and

the IBM Poughkeepsie New York Z Systems test floor. Both

environments run standardized PTPv2 (i.e. PTP4L), and

testing in two environments helps insure that our results will

generalize to other configurations. Since our results are

related to fundamental parameters implemented in PTPv2, it is

likely that the results shown here are representative of a

typical timing network and would also apply to down-level

versions of PTP. All tests were conducted using Intel x86

based servers, specifically multiple identical IBM System X

servers (x3550 M3) each equipped with Intel X540-AT2 PCI

NICs. The IBM environment is a “yellow zone” security

configuration, containing x86 PTP clients and servers running

Ubuntu Linux 18.04.2. This is interconnected to the Marist

campus via an IBM 8264 switch and approximately 30 miles

of AT&T network infrastructure, using the Cisco AnyConnect

client. The Marist ECRL includes x86 PTP clients and servers

running Ubuntu Linux 17.1. Across this environment we

implemented PTPv2 (the LinuxPTP package). A grandmaster

PTP timeTransmitter is routed through an IBM/Lenovo G8264

PTP compatible switch to a pair of listeners, one of which

serves as our covert channel attack node. The attack node

attempts to send corrupted PTP protocol packets which

contain exfiltrated data, with minimal disruption to the

functioning timing network. Note that the attack node does not

need to be running PTP in order to function as an attack node.

 To evaluate behavior of the covert channel, we wrote an

original script in Python 3.6 which creates spoofed

delay_request messages and sends them to the grandmaster

clock for processing (normally the grandmaster will reply with

a delay_response packet). In this relatively low data rate

covert channel, 8 bytes of exfiltrated data is inserted into the

packet header correction field, and optionally another 8 bytes

of exfiltrated data is inserted into the clock identification field

(this is comparable to data rates achieved by other covert

channel protocols discussed previously). For testing purposes,

we created a large text file of hexadecimal data for

exfiltration. Our script reads 16 bytes at a time from this file,

creates the spoofed delay_request packets, and sends them to

the grandmaster at time intervals which mimic normal timing

signal operation. Optionally, we can also sniff incoming

packets to predict the next sequence ID value for our spoofed

packets, in order to avoid issues with potential packet

collisions. A sample packet trace captured with WireShark

3.4.6 illustrating a spoofed packet header is shown in figure 1.

Spoofed packets and their exfiltrated data can be extracted at

the grand master node.

Figure 1 – WireShark trace of a spoofed packet header

 We tested several different attack node and spoof packet

configurations to determine the impact on PTPv2. First, when

the attack node is not running PTP, the master node responds

normally to the delay_request message with a delay_response

message. There is no impact on the timing network, and we

were able to iterate our script thousands of times to exfiltrate

significant amounts of data undetected. Next, we tested with

the attack node running PTP. In this case, if we use non-

colliding packet sequence IDs as discussed earlier, the effect is

the same as if the attack node was not running PTP (i.e. the

master node responds normally to the delay_request message

with a delay_response message and there is no other

detectable impact on the timing network). This use case with

non-colliding sequence IDs is the default implementation for

many enterprise class PTP profiles, which are susceptible to

this form of data exfiltration. Since enterprise class PTP

profiles are all unicast, it’s not possible to intentionally

configure colliding sequence IDs. Next, we tested an attack

node running PTP with colliding packet sequence IDs, to

determine if there was any advantage to reconfiguring the

default enterprise class PTP profile. As before, the master

node responds normally to the delay_request message. In this

case, however, there is a noticeable difference; the data in the

correction field is reflected by the raw delay value in the PTP

output. This suggested that it might be possible to use a covert

channel to manipulate operation of the timing network.

Further testing showed that if we use colliding packet

sequence IDs and set tsproc_mode to “raw”, the clock offset is

now computed by taking into account the raw output of the

correction field. In other words, we were able to produce

large, incorrect offsets in the master clock value (on the order

of minutes to hundreds of minutes or greater) under these

conditions.

4. Correction Field MITM Attack

 Based on this zero-day vulnerability, we developed a new

man-in-the-middle (MITM) packet injection exploit against

the PTPv2 network. The configuration for the correction field

MITM attack is shown in figure 2, in which a timeReceiver

node is connected through a boundary clock. By intercepting

packets before they leave the boundary node and injecting

large data values into the correction field, we should be able to

produce large, incorrect clock offsets at the timeReceiver

node.

Figure 2 – Correction field MITM attack configuration

 Our first attempts involved sniffing for incoming

sync_followup messages, copying those packets, inserting

spoofed data into the correction field, then resending the

packets to the timeReceiver node. This approach didn’t work,

since the timeReceiver node was receiving the authentic

sync_followup messages before our spoofed packets, and was

calculating its timing offset from the real data; upon receiving

our spoofed copy, the timeReceiver node ignored the spoofed

packet. Our second attempt involved sniffing for the sync

messages instead; once again, the authentic packets were

received before our spoofed packets, and there was no effect.

While it may be possible to address this race condition and

cause the spoofed packets to be processed before the authentic

packets, we instead opted for a different approach.

 Our third attempt avoids making copies of the packets, and

instead directly manipulates iptables, using Python-iptables

1.0.0. This produces significant non-intuitive results. For

example, if we insert a very large value in the correction field,

PTP4L will stop generating master offset messages

completely. This makes it impossible to determine the effect

on the master clock offset. There is apparently no explanation

for this behavior in the PTPv2 operating specifications.

Further, if we insert a very small value in the correction field,

PTP4L will consistently generate negative delay messages and

computations. The full ramifications of using only negative

delay messages are unclear, since this condition is not

addressed in the PTPv2 operating specifications. Example

results showing small and large correction field values are

shown in figure 3. We note that phc2sys behaves normally

during both attacks. In yet another example, we show that

there are certain iptables rules that can prevent PTP

communication altogether. When these rules were in place, the

timeReceiver node did not receive any messages from the

boundary clock, and therefore defaulted into acting as its own

master clock.

Figure 3 – sample trace showing small correction fields

causing negative delay (top) and large correction delays

causing timeouts (bottom)

5. Clock Frequency Attack

 We further attempted using the sync_followup field for

covert channel exfiltration. This turned out to be unsuitable,

since spoofing data into the sync_followup field results in

large offsets to the master clock, which are easily detected by

the timing network. However, the resulting offsets had the

additional unanticipated effect of changing the clock

frequency itself. This suggested another new zero-day

vulnerability against timing networks; the corresponding

exploit is called the clock frequency attack. In this attack,

sync_followup packets are spoofed with large amounts of data

inserted into the correction field. This has two effects; first, it

causes a large, incorrect clock offset, and second, it causes the

clock frequency to exceed its maximum allowed value. Under

these conditions, the PTP clock servo algorithm is unable to

synchronize back to the master clock. Further, the clock’s

master offset value continues to drift even after the attack has

concluded.

 Results of this attack on the master clock offset during the

attack are shown in figure 4, which demonstrates the

significant clock offsets that can be achieved. The master

clock drift after the attack has completed (i.e. the master clock

fallout) is shown in figure 5. Sample logs during the attack

show artificially high values of PTP4L, master offset, and path

delay. The s2 frequency value is locked at -nan (not a

number), indicating that the clock servo algorithm is unable to

maintain clock synchronization during the attack. Similarly,

the s0 clock servo is shown to be locked at -nan during and

after the attack, while repetitive clockcheck messages are

generated. Further, the PTP hardware clock offset (derived

from the phc2sys parameter as before) and the corresponding

system hardware logs clearly show that we have successfully

altered the clock frequency, not just the clock offset or delay,

and that the system is unable to recover for some time after the

attack is complete. As noted previously for other attacks, there

is apparently no explanation for this behavior in the PTPv2

operating specifications.

Figure 4 – Master clock offset during attack

Figure 5 – Master Clock fallout

Figure 6 – Sample clock frequency attack logs (-nan results)

6.Proposed Mitigation

 While the root cause of the vulnerabilities leading to the

correction field MITM attack and the clock frequency attack

remain unknown, we can suggest possible mitigations based

on our test results. Using the optional AUTHENTICATION

TLV for PTP would in principle address the lack of

authentication which allows both of the attacks proposed in

this paper to succeed. Further enhancement comes from the

use of proper key management, such as the proposed Network

Time Security (NTS) for PTP. There are two primary reasons

to consider NTS for PTP. The first involves reuse of existing

network timing infrastructure. Most clients will continue to

use both NTP and PTP in their data and telecom centers for

the foreseeable future, so there are benefits to providing a

common security infrastructure for both protocols. Further,

TLS is already present on many devices, since any device with

an HTTPS management console already supports TLS and can

support NTS. Second, NTS for PTP offers highly flexible

configuration options. The TLS cipher selection is adaptable,

and implementations of both traditional TLS and hybrid post-

quantum handshake protocols are becoming available. NTS

can be configured in a unicast-based or group-based

(multicast) approach, depending on the application security

requirements. Resilient architecture supporting both PTP

instances with backup NTP instances on a particular end

device (such as an enterprise-class server) has already been

proposed for large data centers, and would make it easy to

support this type of authentication.

 We have conducted preliminary testing using Timemaster,

a program that is part of the LinuxPTP package (which is also

parent to the PTP4L and phc2sys packages we have used

throughout these tests). Timemaster runs on PTP

timeReceiver nodes and configures PTP4L and phc2sys to

operate as a reference clock (PHC) for NTP packages such as

chrony or ntpd which in turn use the NTP false-ticker

algorithm to pick from both PTP and NTP sources in which to

synchronize the system clock. We used chrony (available

under GNU GPL license), an implementation of NTP which

can synchronize the system clock with NTP servers, other

reference clocks, or manual input. Chrony includes a daemon

that can be started at boot time (called chronyd) and a

command line interface which can be used to monitor

performance and change operating parameters (called

chronyc). Using PTP4L and chrony, the grandmaster operates

as both a PTP timeTransmitter and NTP server, providing time

data to our timeReceiver (and NTP client) node, while another

timeReceiver launches the same spoofing attacks. Initially,

PTP is selected as the most accurate time source, and NTP is

advertised as the next most accurate time source, according to

the chronyd logs. We attempted the correction field MITM

and clock frequency attacks using this configuration. A

successful covert channel exploitation will not produce a PTP

offset, and therefore chronyd will not select another time

source, so this attack succeeds. A covert channel attack that

exploits a PTP4L configuration with timestamp processing set

to raw, as discussed previously, does create a PTP offset and

prompts chronyd to mark the PTP source as ‘false-ticker’.

Thus, we suggest a combination of NTP and PTP to mitigate

this type of attack under at least some operating conditions.

7. Conclusions

 Similar to many other networking protocols, it is possible

to implement covert communication channels using the IEEE

1588 PTP protocol. Specifically, we demonstrate undetected

covert communication using 16 bytes from the correction field

and clock ID field in the header of a delay_request message.

The master node responds normally to such messages,

regardless of whether we use colliding sequence IDs. We

further observed that when configured in raw data mode, we

could induce large, incorrect offsets in the computed master

clock. Similar effects were observed when using

sync_followup packets, which are not suitable for covert

channels as a result. However, these effects form the basis for

two new zero-day proof-of-concept exploits. We demonstrate

a MITM packet injection attack using the correction field,

which can use specific size payloads to either stop the system

from generating PTP4L offset messages or force negative

delay messages and computations (phc2sys seems unaffected

during these attacks). We also demonstrate a clock frequency

attack, which both causes large clock offsets and manipulates

the clock frequency such that it exceeds the maximum allowed

value. In this case, the clock servo algorithm is unable to

synchronize the clock back to the master, and the master offset

continues to drift uncontrollably even after the attack is

complete. We investigate mitigation techniques using NTS for

PTP, although experimental testing with Timemaster and

chrony suggest that this will may not completely mitigate the

proposed attacks as the correction field remains mutable by

intermediary nodes (and open to MITM attacks) after

authentication of the timeTransmitter and timeReceiver.

REFERENCES

[1] IEEE 1588-2008, IEEE Instrumentation and Measurement Society. TC-

9 Sensor Technology, "IEEE standard for a precision clock
synchronization protocol for networked measurement and control
systems", 2008.

[2] D. Mills, J. Martin (Editor), J. Brubank, and W. Kasch, “Network Time
Protocol version 4: Protocol and Algorithm Specification”, RFC 5905,
(June 2010) https://tools.ietf.org/html/rfc5905 (last accessed July 11,
2018)

[3] Financial Industries Regulatory Authority (FINRA) on SEC notice 16-
23 (July 2016) http://www.finra.org/industry/notices/16-23 (last
accessed July 11, 2018)

[4] MiFID Regulatory Technical Standard 25 Annex from the European
Commission report (July 6, 2016)
http://ec.europa.eu/finance/securities/docs/isd/mifid/rts/160607-rts-25-
annex_en.pdf (last accessed July 11, 2018)

[5] C. DeCusatis, R. Lynch, W. Kludge, J. Houston, P. Wojciak, and S.
Guendert, “Impact of cyberattacks on precision time protocol”, IEEE
Transactions on Instrumentation and Measurement, vol. 69, no. 5, p.
2172-2181 (May 2020)

[6] T. N. Tsapakis, “Alternative communication channel over NTP”, Virus
Bulletin, pp. 1-8, April 2019
https://www.virusbulletin.com/virusbulletin/2019/04/alternative-
communication-channel-over-ntp/ (last accessed December 21, 2021)

[7] G.Garnet, “IEEE 1588 v2 Tutorial”, Proc. ISPCS 2008, Ann Arbor,
Michigan https://www.ieee802.org/1/files/public/docs2008/as-garner-
1588v2-summary-0908.pdf (last accessed March 4, 2022)

https://www.virusbulletin.com/virusbulletin/2019/04/alternative-communication-channel-over-ntp/
https://www.virusbulletin.com/virusbulletin/2019/04/alternative-communication-channel-over-ntp/
https://www.ieee802.org/1/files/public/docs2008/as-garner-1588v2-summary-0908.pdf
https://www.ieee802.org/1/files/public/docs2008/as-garner-1588v2-summary-0908.pdf

