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Abstract— The IEEE 1588 standard, known as Precision Time 

Protocol (PTP), is an emerging candidate for high precision 

timing and clock distribution networks. We present experimental 

results from a PTP test bed that demonstrate new types of covert 

channel communications, which allow PTP protocol to be used 

for data exfiltration and other network communication that 

violates the implemented cybersecurity policy.  We then expand 

upon this work to demonstrate two new zero-day vulnerabilities 

in the PTP protocol, and develop proof-of-concept exploits for 

these attacks. In one attack, we demonstrate a novel man-in-the-

middle (MITM) packet injection exploit against the PTP network 

that produces large, incorrect timing offsets at PTP timeReceiver  

nodes. In a second attack, we demonstrate the use of specific 

meta-data payloads to generate large time Transmitter (i.e. 

master clock) offsets, and to manipulate not just the clock offset 

but the actual clock frequency itself. We also investigate 

proposed mitigation techniques, including the use of NTS secured 

NTP with PTP concurrently which is suggested by some of our 

experimental results using Timemaster.  
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Introduction  

 

1. Introduction 

 

     The IEEE 1588 standard, known as Precision Time 

Protocol (PTP) [1], is an emerging candidate for high 

precision timing networks, including clock distribution and 

synchronization. It is a follow-on to the widely used Network 

Time Protocol (NTP) [2] in applications which require 

enhanced timing performance. Many enterprise-class data 

centers, telecommunications back haul systems, cloud service 

providers, high performance computing applications, and 

others rely on a timing subsystem that is used to synchronize 

networked servers and other data processing equipment. 

Theoretically NTP can achieve timing accuracy of up to 1 ms, 

although in practice accuracies of tens to hundreds of ms are 

fairly common. Recently, a need for more accurate time 

synchronization has emerged.  According to recent regulatory 

requirements in the financial sector [3,4], servers must be 

synchronized to within 50 - 100 millisecond drift tolerance of 

the NIST atomic clock, while proposed standards call for 

tolerances as low as 1 microsecond in some applications.  

These timing synchronization requirements are significantly 

lower than a standard NTP implementation can achieve. While 

some vendors have developed proprietary timing protocols 

that partially address these needs, they require additional 

wiring infrastructure that can be costly and problematic to 

deploy, and are often incompatible with extended distance 

fiber optic wavelength multiplexing links and software-

defined network (SDN) controllers. Thus, there is a strong 

desire to design future timing networks around an open 

industry standard clock protocol with improved accuracy, such 

as the PTP protocol. In a previous paper [5], we described 

three security vulnerabilities in the current release of PTP, and 

discussed potential mitigation techniques. 

 

     In this paper, we present experimental results from a PTP 

test bed that demonstrate new types of covert channel 

communications, which allow the PTP protocol to be used for 

data exfiltration and other network communications that 

violate the implemented cybersecurity policy.  We then 

expand upon this work to demonstrate two new zero-day 

vulnerabilities in the PTP protocol, and develop proof-of-

concept exploits for these attacks. In one attack, we 

demonstrate a novel man-in-the-middle (MITM) packet 

injection exploit against the PTPv2 network which is used to 

produce large, incorrect timing offsets at PTP timeReceiver 

nodes. In a second attack, we demonstrate the use of specific 

meta-data payloads to generate large timeTransmitter clock 

offsets (i.e. master clock; note that at the time of this writing, 

IEEE standard notation for PTP4L systems as used in this 

testing refers to the master clock, while emerging standards 

plan to use timeTransmitter notation for this feature; in order 

to avoid confusion, we have been advised to continue using 

the master clock notation for this paper).  Further, we can 

manipulate not just the clock offset but the actual clock 

frequency itself. We also discuss proposed mitigation 

techniques for these vulnerabilities.  

 

2. Covert channels in PTPv2 

 

     A covert channel refers to a communication path used to 

transfer information between processes that are normally not 

allowed to communicate with each other under the current 

cybersecurity policy. Since a covert channel was not designed 

for communication, it often exhibits low data rates and lacks 

features normally associated with a communication channel, 

such as redundancy, retransmission, or error 



detection/correction capabilities. Despite these drawbacks, 

covert channels are widely used to circumvent cybersecurity 

policies, for example to exfiltrate stolen data or to install and 

update malware. Ideally covert channel communication is 

difficult or impossible to detect by other processes, and does 

not obviously impede normal system operation. Meta-data 

fields of many popular network protocols can be used as 

covert channels; prior documented examples include covert 

channels within DNS, ICMP, NTP, and others [6]. 

   

     In this paper, we investigate several approaches to 

implementing covert channels using PTP. In particular, the 

accuracy of clock synchronization over packet networks is 

highly sensitive to delay jitter in the underlying network, 

which dramatically affects clock accuracy.  To address this, 

PTP defines transparent clocks (TCs), i.e. switches and routers 

that improve end-to-end clock accuracy by updating a 

“correction field” in the PTP packet header.  A transparent 

clock is a PTP node with more than one port which doesn’t 

participate in the Best TimeTransmitter Clock Algorithm 

(BTCA), such as a stateless switch.  PTP data frames are 

forwarded through a TC, and their resident time is added to 

the correction field in the frame header. The correction field 

thus contains the latency caused by the current TC, and can be 

used to compensate for delays due to queuing, processing 

time, and propagation delays. PTP does not specify how the 

information from the correction field is to be used to 

accomplish clock synchronization; this is determined by other 

timing profile rules [7].  The correlation field is a 64-bit 

integer, but the PTP standard does not specify whether the 

length or data type should be validated; there is also no 

standard approach to determining whether the correlation field 

is in use or not. There is no corresponding field in the NTP 

protocol. Since it is possible to modify the contents of the 

correction field without significantly impacting normal PTP 

protocol operation, this field is a good potential candidate for 

use as a covert channel.  

3. Experimental Results  

 

     Our PTP testbed spans two environments, namely the 

Marist College enterprise computing research lab (ECRL) and 

the IBM Poughkeepsie New York Z Systems test floor. Both 

environments run standardized PTPv2 (i.e. PTP4L), and 

testing in two environments helps insure that our results will 

generalize to other configurations.  Since our results are 

related to fundamental parameters implemented in PTPv2, it is 

likely that the results shown here are representative of a 

typical timing network and would also apply to down-level 

versions of PTP.  All tests were conducted using Intel x86 

based servers, specifically multiple identical IBM System X 

servers (x3550 M3) each equipped with Intel X540-AT2 PCI 

NICs.  The IBM environment is a “yellow zone” security 

configuration, containing x86 PTP clients and servers running 

Ubuntu Linux 18.04.2. This is interconnected to the Marist 

campus via an IBM 8264 switch and approximately 30 miles 

of AT&T network infrastructure, using the Cisco AnyConnect 

client. The Marist ECRL includes x86 PTP clients and servers 

running Ubuntu Linux 17.1.  Across this environment we 

implemented PTPv2 (the LinuxPTP package).  A grandmaster 

PTP timeTransmitter is routed through an IBM/Lenovo G8264 

PTP compatible switch to a pair of listeners, one of which 

serves as our covert channel attack node.  The attack node 

attempts to send corrupted PTP protocol packets which 

contain exfiltrated data, with minimal disruption to the 

functioning timing network. Note that the attack node does not 

need to be running PTP in order to function as an attack node.  

 

     To evaluate behavior of the covert channel, we wrote an 

original script in Python 3.6 which creates spoofed 

delay_request messages and sends them to the grandmaster 

clock for processing (normally the grandmaster will reply with 

a delay_response packet). In this relatively low data rate 

covert channel, 8 bytes of exfiltrated data is inserted into the 

packet header correction field, and optionally another 8 bytes 

of exfiltrated data is inserted into the clock identification field 

(this is comparable to data rates achieved by other covert 

channel protocols discussed previously). For testing purposes, 

we created a large text file of hexadecimal data for 

exfiltration.  Our script reads 16 bytes at a time from this file, 

creates the spoofed delay_request packets, and sends them to 

the grandmaster at time intervals which mimic normal timing 

signal operation.  Optionally, we can also sniff incoming 

packets to predict the next sequence ID value for our spoofed 

packets, in order to avoid issues with potential packet 

collisions. A sample packet trace captured with WireShark 

3.4.6 illustrating a spoofed packet header is shown in figure 1.  

Spoofed packets and their exfiltrated data can be extracted at 

the grand master node.  

 

Figure 1 – WireShark trace of a spoofed packet header 

   



     We tested several different attack node and spoof packet 

configurations to determine the impact on PTPv2.  First, when 

the attack node is not running PTP, the master node responds 

normally to the delay_request message with a delay_response 

message.  There is no impact on the timing network, and we 

were able to iterate our script thousands of times to exfiltrate 

significant amounts of data undetected. Next, we tested with 

the attack node running PTP.  In this case, if we use non-

colliding packet sequence IDs as discussed earlier, the effect is 

the same as if the attack node was not running PTP (i.e. the 

master node responds normally to the delay_request message 

with a delay_response message and there is no other 

detectable impact on the timing network).  This use case with 

non-colliding sequence IDs is the default implementation for 

many enterprise class PTP profiles, which are susceptible to 

this form of data exfiltration. Since enterprise class PTP 

profiles are all unicast, it’s not possible to intentionally 

configure colliding sequence IDs. Next, we tested an attack 

node running PTP with colliding packet sequence IDs, to 

determine if there was any advantage to reconfiguring the 

default enterprise class PTP profile. As before, the master 

node responds normally to the delay_request message.  In this 

case, however, there is a noticeable difference; the data in the 

correction field is reflected by the raw delay value in the PTP 

output. This suggested that it might be possible to use a covert 

channel to manipulate operation of the timing network. 

Further testing showed that if we use colliding packet 

sequence IDs and set tsproc_mode to “raw”, the clock offset is 

now computed by taking into account the raw output of the 

correction field. In other words, we were able to produce 

large, incorrect offsets in the master clock value (on the order 

of minutes to hundreds of minutes or greater) under these 

conditions.  

 

4. Correction Field MITM Attack 

 

     Based on this zero-day vulnerability, we developed a new 

man-in-the-middle (MITM) packet injection exploit against 

the PTPv2 network. The configuration for the correction field 

MITM attack is shown in figure 2, in which a timeReceiver 

node is connected through a boundary clock. By intercepting 

packets before they leave the boundary node and injecting 

large data values into the correction field, we should be able to 

produce large, incorrect clock offsets at the timeReceiver 

node.  

 

 
Figure 2 – Correction field MITM attack configuration  

 

     Our first attempts involved sniffing for incoming 

sync_followup messages, copying those packets, inserting 

spoofed data into the correction field, then resending the 

packets to the timeReceiver node.  This approach didn’t work, 

since the timeReceiver node was receiving the authentic 

sync_followup messages before our spoofed packets, and was 

calculating its timing offset from the real data; upon receiving 

our spoofed copy, the timeReceiver node ignored the spoofed 

packet. Our second attempt involved sniffing for the sync 

messages instead; once again, the authentic packets were 

received before our spoofed packets, and there was no effect.  

While it may be possible to address this race condition and 

cause the spoofed packets to be processed before the authentic 

packets, we instead opted for a different approach.   

 

     Our third attempt avoids making copies of the packets, and 

instead directly manipulates iptables, using Python-iptables 

1.0.0. This produces significant non-intuitive results. For 

example, if we insert a very large value in the correction field, 

PTP4L will stop generating master offset messages 

completely. This makes it impossible to determine the effect 

on the master clock offset.  There is apparently no explanation 

for this behavior in the PTPv2 operating specifications.  

Further, if we insert a very small value in the correction field, 

PTP4L will consistently generate negative delay messages and 

computations. The full ramifications of using only negative 

delay messages are unclear, since this condition is not 

addressed in the PTPv2 operating specifications.  Example 

results showing small and large correction field values are 

shown in figure 3. We note that phc2sys behaves normally 

during both attacks.  In yet another example, we show that 

there are certain iptables rules that can prevent PTP 

communication altogether. When these rules were in place, the 

timeReceiver node did not receive any messages from the 

boundary clock, and therefore defaulted into acting as its own 

master clock.  

 

        

 



Figure 3 – sample trace showing small correction fields 

causing negative delay (top) and large correction delays 

causing timeouts (bottom)  

 

5. Clock Frequency Attack 

 

     We further attempted using the sync_followup field for 

covert channel exfiltration.  This turned out to be unsuitable, 

since spoofing data into the sync_followup field results in 

large offsets to the master clock, which are easily detected by 

the timing network. However, the resulting offsets had the 

additional unanticipated effect of changing the clock 

frequency itself. This suggested another new zero-day 

vulnerability against timing networks; the corresponding 

exploit is called the clock frequency attack. In this attack, 

sync_followup packets are spoofed with large amounts of data 

inserted into the correction field.  This has two effects; first, it 

causes a large, incorrect clock offset, and second, it causes the 

clock frequency to exceed its maximum allowed value. Under 

these conditions, the PTP clock servo algorithm is unable to 

synchronize back to the master clock. Further, the clock’s 

master offset value continues to drift even after the attack has 

concluded.  

 

     Results of this attack on the master clock offset during the 

attack are shown in figure 4, which demonstrates the 

significant clock offsets that can be achieved.  The master 

clock drift after the attack has completed (i.e. the master clock 

fallout) is shown in figure 5.   Sample logs during the attack 

show artificially high values of PTP4L, master offset, and path 

delay.  The s2 frequency value is locked at -nan (not a 

number), indicating that the clock servo algorithm is unable to 

maintain clock synchronization during the attack. Similarly, 

the s0 clock servo is shown to be locked at -nan during and 

after the attack, while repetitive clockcheck messages are 

generated.  Further, the PTP hardware clock offset (derived 

from the phc2sys parameter as before) and the corresponding 

system hardware logs clearly show that we have successfully 

altered the clock frequency, not just the clock offset or delay, 

and that the system is unable to recover for some time after the 

attack is complete. As noted previously for other attacks, there 

is apparently no explanation for this behavior in the PTPv2 

operating specifications.   

 

 
Figure 4 – Master clock offset during attack 

 
Figure 5 – Master Clock fallout 

 

 

      
Figure 6 – Sample clock frequency attack logs (-nan results) 

 

6.Proposed Mitigation 

 

     While the root cause of the vulnerabilities leading to the 

correction field MITM attack and the clock frequency attack 

remain unknown, we can suggest possible mitigations based 

on our test results.  Using the optional AUTHENTICATION 

TLV for PTP would in principle address the lack of 

authentication which allows both of the attacks proposed in 

this paper to succeed. Further enhancement comes from the 

use of proper key management, such as the proposed Network 

Time Security (NTS) for PTP. There are two primary reasons 

to consider NTS for PTP. The first involves reuse of existing 

network timing infrastructure.  Most clients will continue to 

use both NTP and PTP in their data and telecom centers for 

the foreseeable future, so there are benefits to providing a 

common security infrastructure for both protocols. Further, 

TLS is already present on many devices, since any device with 

an HTTPS management console already supports TLS and can 

support NTS. Second, NTS for PTP offers highly flexible 

configuration options.  The TLS cipher selection is adaptable, 

and implementations of both traditional TLS and hybrid post-

quantum handshake protocols are becoming available. NTS 

can be configured in a unicast-based or group-based 

(multicast) approach, depending on the application security 

requirements.  Resilient architecture supporting both PTP 

instances with backup NTP instances on a particular end 

device (such as an enterprise-class server) has already been 

proposed for large data centers, and would make it easy to 

support this type of authentication.   

 



     We have conducted preliminary testing using Timemaster, 

a program that is part of the LinuxPTP package (which is also 

parent to the PTP4L and phc2sys packages we have used 

throughout these tests).  Timemaster runs on PTP 

timeReceiver nodes and configures PTP4L and phc2sys to 

operate as a reference clock (PHC) for NTP packages such as 

chrony or ntpd which in turn use the NTP false-ticker 

algorithm to pick from both PTP and NTP sources in which to 

synchronize the system clock. We used chrony (available 

under GNU GPL license), an implementation of NTP which 

can synchronize the system clock with NTP servers, other 

reference clocks, or manual input. Chrony includes a daemon 

that can be started at boot time (called chronyd) and a 

command line interface which can be used to monitor 

performance and change operating parameters (called 

chronyc). Using PTP4L and chrony,  the grandmaster operates 

as both a PTP timeTransmitter and NTP server, providing time 

data to our timeReceiver (and NTP client) node, while another 

timeReceiver launches the same spoofing attacks. Initially, 

PTP is selected as the most accurate time source, and NTP is 

advertised as the next most accurate time source, according to 

the chronyd logs. We attempted the correction field MITM 

and clock frequency attacks using this configuration. A 

successful covert channel exploitation will not produce a PTP 

offset, and therefore chronyd will not select another time 

source, so this attack succeeds.  A covert channel attack that 

exploits a PTP4L configuration with timestamp processing set 

to raw, as discussed previously, does create a PTP offset and 

prompts chronyd to mark the PTP source as ‘false-ticker’. 

Thus, we suggest a combination of NTP and PTP to mitigate 

this type of attack under at least some operating conditions. 

 

7. Conclusions 

 

     Similar to many other networking protocols, it is possible 

to implement covert communication channels using the IEEE 

1588 PTP protocol.  Specifically, we demonstrate undetected 

covert communication using 16 bytes from the correction field 

and clock ID field in the header of a delay_request message. 

The master node responds normally to such messages, 

regardless of whether we use colliding sequence IDs. We 

further observed that when configured in raw data mode, we 

could induce large, incorrect offsets in the computed master 

clock. Similar effects were observed when using 

sync_followup packets, which are not suitable for covert 

channels as a result.  However, these effects form the basis for 

two new zero-day proof-of-concept exploits. We demonstrate 

a MITM packet injection attack using the correction field, 

which can use specific size payloads to either stop the system 

from generating PTP4L offset messages or force negative 

delay messages and computations (phc2sys seems unaffected 

during these attacks).  We also demonstrate a clock frequency 

attack, which both causes large clock offsets and manipulates 

the clock frequency such that it exceeds the maximum allowed 

value.  In this case, the clock servo algorithm is unable to 

synchronize the clock back to the master, and the master offset 

continues to drift uncontrollably even after the attack is 

complete. We investigate mitigation techniques using NTS for 

PTP, although experimental testing with Timemaster and 

chrony suggest that this will may not completely mitigate the 

proposed attacks as the correction field remains mutable by 

intermediary nodes (and open to MITM attacks) after 

authentication of the timeTransmitter and timeReceiver.  
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