

Applications of the Quantum Approximate

Optimization Algorithm to Cybersecurity DDoS

Graph Partitioning
Casimer DeCusatis, Meghan OLoughlin, Alex Baida, and Chrisopher Pellerito

Marist College

Poughkeepsie, NY USA

casimer.decusatis@marist.edu

Abstract— While the theoretical principles of quantum

computing have been known for decades, practical quantum

computers have only recently been developed. These systems are

currently limited to a small number of qubits, but are sufficient

to develop working proof of concept implementations that can

eventually be scaled to much larger applications. In this paper,

we investigate a near term application of the quantum

approximate optimization algorithm (QAOA) to perform graph

partitioning on cybersecurity attack patterns in a security

operations center. Specifically, we analyze cyberattack data

from honeynets represented as a hive plot, and apply QAOA in

an effort to sandbox network nodes affected by a distributed

denial of service (DDoS) attack. Using the IBM Q System One,

we demonstrate a QAOA solution for the Max Cut problem

(written in Qiskit) and a proof-of-concept application to DDoS

attack hive plot data sets taken from our honeynet.

Experimental results of this analysis and extensions of this work

to larger systems will also be discussed.

Keywords—Quantum, QOAO, hive, DDoS

I. INTRODUCTION

 There has been a remarkable increase in both the number

and severity of cybersecurity attacks in recent years, which are

expected to cost over $2 Trillion to the global economy [1].

One of the most serious examples is the use of massive

botnets for malware delivery and distributed denial of service

(DDoS) attacks. In a recent 3-month period, botnet attacks

increased 29% to nearly 17,000 per day [2]; over the past year,

the average DDoS attack size has increased over 540%, with

the maximum attack size exceeding a terabit/second. There is

a significant need for faster, novel techniques which enable

intrusion detection, visualization, and response to botnet

attacks in a security operations center (SOC). While this is a

multi-pronged effort, in this paper we consider the application

of quantum computing techniques to the analysis of

cyberattack graphs in the SOC.

 Quantum computing is an emerging field which

incorporates fundamentals of both quantum physics and

computer science. This approach holds the potential to solve

certain exponential execution time problems which are beyond

practical limits of current digital computers. While the

theoretical basis of this field has been understood for many

decades, only within the past few years have working quantum

computers become available. One of the largest near-term

quantum computers is the IBM Q System One, which is

programmed using the Qiskit language [3]. Much of the near-

term research in this field involves proof of concept

implementations, which are limited by the scalability of

current quantum computer hardware (currently the largest

publicly available systems from IBM are only about 5-8

qubits). Nevertheless, it’s critical to study these applications

at a small scale now, in preparation for larger quantum

computers becoming available within the next few years.

(IBM roadmaps plan for a 1,000 qubit machine by 2023 [4]).

 In this paper, we discuss the application of a quantum

computing co-processor to parse hive plot graphs of honeynet

cyberattack patterns. We describe an implementation of the

Max Cut problem in Qiskit capable of creating binary graph

node classification. With each node in the attack graph

represented by one qubit, we demonstrate this work using data

sets previously collected from our own honeynets (these data

sets have previously been employed for developing and

training adversarially resistant machine learning classifiers

[5]). Due to the limitations of near-term available quantum

computing hardware, we demonstrate this approach for a

relatively small attack graph; simulations suggest that the

algorithm will be scalable to larger DDoS attacks on future

quantum computing systems.

II. QAOA AND MAX CUT

 The QAOA algorithm is an example of combinatorial

optimization [6], a class of algorithms which attempts to find

an optimal solution by maximizing/minimizing a cost function

of a discrete variable, C(x). We encode the optimization

problem as a Hamiltonian operator, H (a Hermitian matrix

which describes the total energy of a quantum system), such

that the lowest energy state corresponds to the optimal

solution. The energy of a quantum system in a state  is given

by the expectation value with respect to H, which can be

expressed in bra-ket notation:

Energy (| >) =   | H |  >

mailto:casimer.decusatis@marist.edu

 The lowest energy or ground state * of a quantum system

is the value of  for which the expectation is minimized:

 | * > = argmin Energy | )

 A variational method such as QAOA may be used to

approximate the ground state  * and the minimum energy of

a quantum system. First, we choose a trial state or ansatz

parameterized by some value  (in other words, we only

consider a subset of the entire Hilbert solution space). Next,

we vary  in order to minimize the energy value. We seek the

value * for which the energy of the trial state is lowest,

 Energy () = () | H | () >

 By running QAOA on a quantum computer, we calculate

an energy value, which is then passed to a classical optimizer

(such as used in the numpy library in Qiskit) that computes

updated values of  for successive iterations of QAOA until

we converge on an approximate solution.

 A classic example is the Max Cut problem, which was the

first application described in the original QAOA paper [7].

Max Cut is a quadratic unconstrained binary optimization

(QUBO) problem. Consider an n-node non-directed graph G =

(V, E) where V is the set of vertices (such that |V| = n) and E

is the set of edges between nodes i and j which may be

assigned some weight w(i, j) > 0 and for which w(i, j) = w(j,i)

. A cut is defined as partitioning the original set V into two

subsets, so that each node is a member of either the first or

second subset. The cost function C(x) is the sum of the

weights of edges connecting points in the two different subsets

(i.e. we want to cut the graph in such a way that the value of

the edge weights crossing the cut is maximized). Each node i

is assigned a value of either x(i) = 0 or x(i) = 1 to indicate

which of the two subsets contains that node. In this way, we

can generate a binary bit string of i values, representing the

assignment of each note to either the first of second subset.

Then C(x) is given by a sum over indices 0 to n-1 as follows:

 The traditional, brute-force approach to this problem

requires that we exhaustively try all the possible binary

assignments for each node (in each binary assignment, the

entry of a vertex is classified as belonging to either the first or

second partition) and check the weight of the cut associated

with each graph partition. For a graph with N nodes, the total

number of graph partitions grows as 2N and the problem

cannot be solved in less than exponential time with respect to

the number of nodes. In general, there are two approaches for

dealing with such problems. First, we can use an

approximation algorithm which is guaranteed to find a

solution of specified quality in polynomial runtime. Second,

we can use a heuristic algorithm which doesn’t have a

polynomial runtime guarantee, but appears to perform well on

some instances of the problem. The QAOA is an example of

the second approach. For classical algorithms, it has been

shown that it is NP-hard (i.e. no classical algorithm with

polynomial runtime exists) that achieves a better

approximation ratio than 0.941 [8]; in fact, the best classical

approximation achievable is 0.878 [9 - 11]. This would still

represent a significant performance advantage for identifying

and blocking DDoS attacks. Further, computing the Max Cut

of nonplanar graphs (i.e. graphs whose edges cross each other,

such as those generated by honeynets) is known to be an

exponential execution time problem for classical algorithms,

but may be solvable in polynomial time using quantum

algorithms for at least some specific cases.

 We can encode Max Cut instances as Hamiltonian

operators, and then use variational methods such as QAOA to

find the ground state, which should be a good approximation

of the optimal solution. Our preferred implementation of

QAOA is a layerized quantum circuit (with p layers) based on

an adiabatic process [9]. This form is chosen because,

although there is no performance guarantee for QAOA in

general, there is a guarantee that we will obtain the best

possible solution as p tends to infinity. Thus, we expect that

this form may yield good solutions for large values of p. In

fact, it can be shown that QAOA solutions to Max Cut for

graphs with bounded degree and a circuit for which p=1

achieve an approximation ratio of about 0.692 [6, 7, 9].

Further, since our result will be improved by the choice of a

good ansatz, we can begin by preparing a quantum system in

the ground state of a simple Hamiltonian. Then we transition

to a more complex Hamiltonian whose ground state

corresponds to the desired optimization solution. The adiabatic

theorem tells us that we can remain in the ground state while

transitioning to the more complex Hamiltonian, which yields

the solution to optimization problem. A good way to

implement this is to break up the problem Hamiltonian into

the sum of two different Hamiltonians, known as a cost

Hamiltonian (parameterized by ) and mixer Hamiltonian

(parameterized by ). Thus we need to optimize for two

parameters at each of the p layers used in QAOA. This

formulation means that we can implement QAOA as an

adiabatic schedule alternating between the cost and mixer

Hamiltonians. Note that since QAOA is a variational

algorithm, the mixer layers are needed to perturb the quantum

state between successive cost layers. The time evolution of

the quantum state is obtained by exponentiating the sum of the

cost and mixer Hamiltonians (while a Hamiltonian represents

the energy of a quantum system, time evolution of the

quantum state is also governed by a Hamiltonian per

Schrodinger’s equation). This can be computed to a very good

approximation by the Trotter-Suzuki formula [6]. It turns out

that the layers of QAOA correspond to Trotterized segments

of the time evolution operator for this adiabatic evolution [9].

 Our implementation of QAOA represents each node in the

cyberattack graph as a qubit. First, we apply Hadamard gates

to all qubits to create an equal superposition state. Next, we

apply p repetitions of alternating cost and mixing layers,

represented by unitary quantum gates that form the

exponentiation of the cost and mixer Hamiltonians, as shown

in figure 1.

Figure 1: unitary gate for cost (left) and mixer (right)

 The cost function can be re-written with a variable

reassignment such that it maps to a cost Hamiltonian that can

be expressed as a weighted sum of Pauli gates, each acting on

a single qubit [6]. Exponentiating the cost Hamiltonian yields

controlled single rotation gates [9], which can further be

decomposed into two CNOT gates and one rotational gate.

The mixer layer is defined as a sum over all Pauli X operators,

and the exponentiation of the mixer Hamiltonian yields a

rotational X gate. So, the mixer layer just consists of

rotational X gates applied to each qubit, and parameterized by

 The QAOA circuit can contain as many layers as we like,

each characterized by a single parameter for cost and a single

parameter for mixing. The output is measured in the

computational z basis, and consists of a series of binary bit

strings corresponding to possible solutions of Max Cut. Our

full quantum circuit is shown in figure 2. We then use the

numpy classical optimizer [6] to evaluate the value of the cuts

and compute its mean, which serves as the cost function value.

The classical optimizer then updates the parameters so we can

re-run the quantum circuit, until we converge on a good

approximate solution. In other words, we can think of the bit

strings that correspond to the Max Cut of a graph as the

ground state of a Hamiltonian encoding the cost function. The

QAOA algorithm arrives at a good approximation to this

ground state by evolving from a reference state. The reference

state is given by the ground state of a Hamiltonian that

couples all 2N states forming the basis of the cost Hamiltonian

(i.e. the diagonal basis for the cost function, or the Z

computational basis). We prepare an approximation to the

ground state of this Hamiltonian, and perform a measurement

of that state in the Z basis. Performing a measurement on the

N-qubit quantum state return a bit string corresponding to the

max cut with high probability.

Figure 2 – Qiskit circuit diagram for QAOA with p=1

III. EXPERIMENTAL RESULTS

 Our implementation of QAOA utilizes the Qiskit

optimization library module COBYLA [12]. This is a

numerical optimization method for constrained problems

where the derivative of the objective function is not required.

It directly extends the Variational Quantum Eigensolver

(VQE) class and inherits VQE’s hybrid organizational

structure. Unlike VQE, however, QAOA employs its own

unique computational approach which is configured using the

single integer parameter, p, that describes the depth of the

variational form.

 We validated our implementation of QAOA using a simple

four node graph with a known Max Cut solution. We

performed 100 iterations on random four node graphs to

ensure that our algorithm consistently yields the expected

results, before attempting this algorithm on live honeynet data

graphs. An existing honeynet was used to collect a large

dataset of real world attack patterns, which were used to study

both DoS and DDoS attacks. A a subset of this data

combining DoS and normal traffic is shown in figures 3 and 4.

As in prior research [5], we visualize the cyberattack data as a

hive plot, which has the advantage of not introducing artifacts

into the data set. In order to test our approach using a near-

term quantum computer, we were limited to about 10 qubits as

of this writing. The edge weights for DoS traffic are set higher

than for normal traffic. Edge weights can be assigned in

several different ways, for example weights may be

proportional to the trust level associated with the assets being

accessed, the trust level associated with the incoming data

source, or the bandwidth of the network connection, among

others. Figure 4 shows the edge weights for normal traffic set

equal to 1 and for attack traffic equal to 5. Such a large

separation is not necessary for our approach to work. We

determined experimentally that for our implementation,

QAOA is not very sensitive to the relative values of the edge

weights; a difference of only 0.01 between normal and attack

edge weights yielded the same results. We also verfied the

graph in Figure 3 to be nonplanar using a depth-first search

algorithm (i.e. the networks library in Python) based on

Kuratowski’s Theorem and Wagner’s Theorem [10], so it isn’t

possible to find a Max Cut solution for this graph in

polynomial time using classical algorithms.

Figure 3 – Sample honeynet graph, mixing DoS traffic (solid

edges) and normal traffic (dashed edges)

 0 1 2 3 4 5 6 7 8 9 10 11

0 0 5 1 1 5 5 5 1 5 5 5 1

1 5 0 0 0 5 5 5 1 5 5 5 1

2 1 0 0 0 0 0 0 1 0 0 0 0

3 1 0 0 0 0 0 0 0 0 0 0 1

4 5 5 0 0 0 0 0 0 0 0 0 0

5 5 5 0 0 0 0 0 0 0 0 0 0

6 5 5 0 0 0 0 0 0 0 0 0 0

7 1 0 1 0 0 0 0 0 0 0 0 0

8 5 5 0 0 0 0 0 0 0 0 0 0

9 5 5 0 0 0 0 0 0 0 0 0 0

10 5 5 0 0 0 0 0 0 0 0 0 0

11 1 0 0 1 0 0 0 0 0 0 0 0

Figure 4 – edge weights for data in figure 3, with nodes

identified in bold along the top and left edge

Results of the QAOA solution for this graph are shown in

figure 5. As expected, the result does not isolate all the attack

nodes for p = 1, but after multiple iterations it successfully

isolates about 69% of attack nodes. The ability to isolate this

fraction of attack nodes would be a significant benefit to

cyberdefenders. Improvements in the QAOA result are

expected for higher values of p, with a tradeoff of slightly

longer execution times.

Figure 5 – QAOA solution for the hive plot of Figure 3.

Additional experiments were performed for a DDoS attack are

summarized by the hive plot and QAOA solution in figures 6

and 7, respectively. As before, we were able to successfully

isolate about 68% of the attack nodes (for example, note that

one of the DDoS nodes is on the wrong side of the cut).

Figure 6 – hive plot for DDoS attack data

Figure 7 – QAOA Max Cut solution for DDoS attack graph

 Due to the near term qubit limitations of our quantum

computer, a comparison with brute force methods is possible

to demonstrate the accuracy of our results. In practice, a DoS

or DDoS attack can consist of several hundred nodes or more,

with an aggregate bandwidth on the order of terabytes.

Although quantum computers large enough to analyze such

attacks are not available as of this writing, we believe that the

current algorithms will scale to larger quantum hardware as it

becomes available. Further, we note that even the largest Dos

or DDoS attacks evolve from smaller attacks over time, so if

we can identify an impending attack early enough it would

still be possible to block the attack using even a small

quantum computer. We compared execution time for QAOA

and brute force approaches using the IBM Q System

simulator; results are shown in figure 5.

Figure 5 – Simulation of QAOA vs brute force

 As expected, the simulation exhausted the memory

capacity of an x86 server for large numbers of nodes, and

execution times beyond the range of this graph are unreliable

(our server crashed after about 2 hours attempting to run larger

attack simulations). However, these results predict a

performance advantage for QAOA over brute force techniques

for attacks with more than 26 nodes. Future research with

larger quantum computers will continue to investigate the

limitations of this approach.

IV. SUMMARY AND CONCLUSIONS

 There is a need for new techniques to mitigate DDoS

attacks through analysis of honeynet graph data, such as hive

plots. Max Cut may be a useful approach to partitioning

DDoS attack traffic from normal network traffic. However,

classical implementations of Max Cut for nonplanar graphs

require exponential execution time as the number of attack

nodes increases. There is no classical algorithm with

polynomial run time that can address this problem. We

propose analyzing cyberattack graphs using QAOA, a

heuristic algorithm which doesn’t have a polynomial runtime

guarantee, but whose variational form appears to perform well

on some instances of the problem. In particular, we implement

QAOA as a layerized quantum circuit based on a Trotterized

adiabatic process. For a single layer we achieve a significant

separation between attack and non-attack traffic, and

performance improves as the number of layers increases.

Results suggest that the value of QAOA lies in its ability to

solve Max Cut significantly faster than brute force approaches

while still yielding an approximate solution that is good

enough for many practical applications. After validating our

implementation of QAOA in Qiskit, we demonstrate that

QAOA can separate attack traffic to a high approximation

level using real world honeynet DDoS data on available near-

term quantum computers (10 qubits). Simulations of larger

attacks suggest that QAOA has a performance advantage over

brute force classical techniques for 26 nodes or more. In

addition to continuing this work as larger quantum computers

become available and increasing the number of layers and

shots in the algorithm, future research may include

investigating custom Hamiltonians, using conditional value-at-

risk methods to speed up the optimization process, warm-

starting QAOA from a classical optimization point, and

investigating optimal parameter concentrations over different

problem instances.

REFERENCES

[1] S. Oriyano, “Hacker techniques, tools, and incident handling”, Jones

and Bartlett, Burlington, MA (third edition, 2021)

[2] C. DeCusatis, J. Bavaro, T. Cannistraci, B. Griffin, J. Jenkins, and M.
Ronan, “Red-blue team exercises for cybersecurity training during a
pandemic”, Proc. IEEE CCWC conference, January 2021, New York,
NY

[3] C. DeCusatis and E. McGettrick, “Near term implementation of Shor’s
Algorithm using Qiskit”, Proc. IEEE CCWC conference, January 2021,
New York, NY

[4] A. Cho, “IBM promises 1000 ubit computer by 2023”, Science Insider,
Feb. 2020 https://www.sciencemag.org/news/2020/09/ibm-promises-
1000-qubit-quantum-computer-milestone-2023 (last accessed
December 8, 2021)

[5] M. Guarino, P. Rivas, and C. DeCusatis, “Towards adversarially robust
DDoS attack classification”, Proc. IEEE UEMCON 2020, New York,
NY

[6] Learn quantum computation using Qiskit, published by IBM
Corporation, https://qiskit.org/textbook/preface.html (last accessed
March 4, 2022)

[7] E. Farhi, J. Goldstone, and S. Guttman, “A quantum approximate
optimization algorithm”, Arxiv 1411:.4028 [quant-ph],
https://arxiv.org/abs/1411.4028 (last accessed December 8, 2021)

[8] J. Håstad, Some Optimal Inapproximability Results, J. ACM 48, 798
(2001)

[9] J. Weidenfeller, “QAOA and its applications”, Section 5.2 from
Introduction to the Quantum Approximate Optimization Algorithm and
its Applications, IBM Qiskit Global Summer School (October 5, 2021)
https://www.youtube.com/watch?v=YpLzSQPrgSc and
https://learn.qiskit.org/summer-school/2021/lec5-2-introduction-
quantum-approximate-optimization-algorithm-applications (last
accessed March 14, 2022)

[10] J.A. Bondy and U.S.R. Murty, Graph Theory, Graduate Texts in
Mathematics vol 244, Springer , NY (2008)

[11] A. Bouland, “Power and limitations of QAOA”, Simons Institute,
February 2020 https://www.youtube.com/watch?v=jDl8n7wMSWk (last
accessed March 13, 2022)

[12] Constrained optimization by linear approximation (COBYLA) API
documentation,
https://qiskit.org/documentation/stubs/qiskit.algorithms.optimizers.COB
YLA.html (last accessed March 16, 2022)

https://www.sciencemag.org/news/2020/09/ibm-promises-1000-qubit-quantum-computer-milestone-2023
https://www.sciencemag.org/news/2020/09/ibm-promises-1000-qubit-quantum-computer-milestone-2023
https://arxiv.org/abs/1411.4028
https://www.youtube.com/watch?v=YpLzSQPrgSc
https://learn.qiskit.org/summer-school/2021/lec5-2-introduction-quantum-approximate-optimization-algorithm-applications
https://learn.qiskit.org/summer-school/2021/lec5-2-introduction-quantum-approximate-optimization-algorithm-applications
https://www.youtube.com/watch?v=jDl8n7wMSWk
https://qiskit.org/documentation/stubs/qiskit.algorithms.optimizers.COBYLA.html
https://qiskit.org/documentation/stubs/qiskit.algorithms.optimizers.COBYLA.html

