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Abstract— While the theoretical principles of quantum 

computing have been known for decades, practical quantum 

computers have only recently been developed.  These systems are 

currently limited to a small number of qubits, but are sufficient 

to develop working proof of concept implementations that can 

eventually be scaled to much larger applications. In this paper, 

we investigate a near term application of the quantum 

approximate optimization algorithm (QAOA) to perform graph 

partitioning on cybersecurity attack patterns in a security 

operations center.  Specifically, we analyze cyberattack data 

from honeynets represented as a hive plot, and apply QAOA in 

an effort to sandbox network nodes affected by a distributed 

denial of service (DDoS) attack.  Using the IBM Q System One, 

we demonstrate a QAOA solution for the Max Cut problem 

(written in Qiskit) and a proof-of-concept application to DDoS 

attack hive plot data sets taken from our honeynet.  

Experimental results of this analysis and extensions of this work 

to larger systems will also be discussed. 
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I. INTRODUCTION  

     There has been a remarkable increase in both the number 

and severity of cybersecurity attacks in recent years, which are 

expected to cost over $2 Trillion to the global economy [1].  

One of the most serious examples is the use of massive 

botnets for malware delivery and distributed denial of service 

(DDoS) attacks. In a recent 3-month period, botnet attacks 

increased 29% to nearly 17,000 per day [2]; over the past year, 

the average DDoS attack size has increased over 540%, with 

the maximum attack size exceeding a terabit/second. There is 

a significant need for faster, novel techniques which enable 

intrusion detection, visualization, and response to botnet 

attacks in a security operations center (SOC).  While this is a 

multi-pronged effort, in this paper we consider the application 

of quantum computing techniques to the analysis of 

cyberattack graphs in the SOC.   

 

     Quantum computing is an emerging field which 

incorporates fundamentals of both quantum physics and 

computer science. This approach holds the potential to solve 

certain exponential execution time problems which are beyond 

practical limits of current digital computers. While the 

theoretical basis of this field has been understood for many 

decades, only within the past few years have working quantum 

computers become available.  One of the largest near-term 

quantum computers is the IBM Q System One, which is 

programmed using the Qiskit language [3].  Much of the near-

term research in this field involves proof of concept 

implementations, which are limited by the scalability of 

current quantum computer hardware (currently the largest 

publicly available systems from IBM are only about 5-8 

qubits).  Nevertheless, it’s critical to study these applications 

at a small scale now, in preparation for larger quantum 

computers becoming available within the next few years.  

(IBM roadmaps plan for a 1,000 qubit machine by 2023 [4]).   

 

     In this paper, we discuss the application of a quantum 

computing co-processor to parse hive plot graphs of honeynet 

cyberattack patterns. We describe an implementation of the 

Max Cut problem in Qiskit capable of creating binary graph 

node classification.  With each node in the attack graph 

represented by one qubit, we demonstrate this work using data 

sets previously collected from our own honeynets (these data 

sets have previously been employed for developing and 

training adversarially resistant machine learning classifiers 

[5]).  Due to the limitations of near-term available quantum 

computing hardware, we demonstrate this approach for a 

relatively small attack graph; simulations suggest that the 

algorithm will be scalable to larger DDoS attacks on future 

quantum computing systems. 

II. QAOA AND MAX CUT  

     The QAOA algorithm is an example of combinatorial 

optimization [6], a class of algorithms which attempts to find 

an optimal solution by maximizing/minimizing a cost function 

of a discrete variable, C(x). We encode the optimization 

problem as a Hamiltonian operator, H (a Hermitian matrix 

which describes the total energy of a quantum system), such 

that the lowest energy state corresponds to the optimal 

solution. The energy of a quantum system in a state  is given 

by the expectation value with respect to H, which can be 

expressed in bra-ket notation:  

 

Energy (| >) =   | H |   >          

mailto:casimer.decusatis@marist.edu


 

     The lowest energy or ground state * of a quantum system 

is the value of  for which the expectation is minimized: 

 

                           | * > = argmin Energy |  )        

 

     A variational method such as QAOA may be used to 

approximate the ground state  * and the minimum energy of 

a quantum system. First, we choose a trial state or ansatz 

parameterized by some value  (in other words, we only 

consider a subset of the entire Hilbert solution space).  Next, 

we vary  in order to minimize the energy value.  We seek the 

value * for which the energy of the trial state is lowest,  

 

        Energy () = () | H | () >       

 

     By running QAOA on a quantum computer, we calculate 

an energy value, which is then passed to a classical optimizer 

(such as used in the numpy library in Qiskit) that computes 

updated values of  for successive iterations of QAOA until 

we converge on an approximate solution.  

 

     A classic example is the Max Cut problem, which was the 

first application described in the original QAOA paper [7]. 

Max Cut is a quadratic unconstrained binary optimization 

(QUBO) problem. Consider an n-node non-directed graph G = 

(V, E) where V is the set of vertices (such that |V| = n) and E 

is the set of edges between nodes i and j which may be 

assigned some weight w(i, j) > 0 and for which w(i, j) = w(j,i) 

.  A cut is defined as partitioning the original set V into two 

subsets, so that each node is a member of either the first or 

second subset. The cost function C(x) is the sum of the 

weights of edges connecting points in the two different subsets 

(i.e. we want to cut the graph in such a way that the value of 

the edge weights crossing the cut is maximized). Each node i 

is assigned a value of either x(i) = 0 or x(i) = 1 to indicate 

which of the two subsets contains that node. In this way, we 

can generate a binary bit string of i values, representing the 

assignment of each note to either the first of second subset.  

Then C(x) is given by a sum over indices 0 to n-1 as follows: 

                                    
     The traditional, brute-force approach to this problem 

requires that we exhaustively try all the possible binary 

assignments for each node (in each binary assignment, the 

entry of a vertex is classified as belonging to either the first or 

second partition) and check the weight of the cut associated 

with each graph partition.  For a graph with N nodes, the total 

number of graph partitions grows as 2N  and the problem 

cannot be solved in less than exponential time with respect to 

the number of nodes.  In general, there are two approaches for 

dealing with such problems.  First, we can use an 

approximation algorithm which is guaranteed to find a 

solution of specified quality in polynomial runtime.  Second, 

we can use a heuristic algorithm which doesn’t have a 

polynomial runtime guarantee, but appears to perform well on 

some instances of the problem.  The QAOA is an example of 

the second approach. For classical algorithms, it has been 

shown that it is NP-hard (i.e. no classical algorithm with 

polynomial runtime exists) that achieves a better 

approximation ratio than 0.941 [8]; in fact, the best classical 

approximation achievable is 0.878 [9 - 11].  This would still 

represent a significant performance advantage for identifying 

and blocking DDoS attacks.  Further, computing the Max Cut 

of nonplanar graphs (i.e. graphs whose edges cross each other, 

such as those generated by honeynets) is known to be an 

exponential execution time problem for classical algorithms, 

but may be solvable in polynomial time using quantum 

algorithms for at least some specific cases.  

 

     We can encode Max Cut instances as Hamiltonian 

operators, and then use variational methods such as QAOA to 

find the ground state, which should be a good approximation 

of the optimal solution. Our preferred implementation of 

QAOA is a layerized quantum circuit (with p layers) based on 

an adiabatic process [9]. This form is chosen because, 

although there is no performance guarantee for QAOA in 

general, there is a guarantee that we will obtain the best 

possible solution as p tends to infinity.  Thus, we expect that 

this form may yield good solutions for large values of p.  In 

fact, it can be shown that QAOA solutions to Max Cut for 

graphs with bounded degree and a circuit for which p=1 

achieve an approximation ratio of about 0.692 [6, 7, 9].  

Further, since our result will be improved by the choice of a 

good ansatz, we can begin by preparing a quantum system in 

the ground state of a simple Hamiltonian. Then we transition 

to a more complex Hamiltonian whose ground state 

corresponds to the desired optimization solution. The adiabatic 

theorem tells us that we can remain in the ground state while 

transitioning to the more complex Hamiltonian, which yields 

the solution to optimization problem.  A good way to 

implement this is to break up the problem Hamiltonian into 

the sum of two different Hamiltonians, known as a cost 

Hamiltonian (parameterized by ) and mixer Hamiltonian 

(parameterized by ). Thus we need to optimize for two 

parameters at each of the p layers used in QAOA. This 

formulation means that we can implement QAOA as an 

adiabatic schedule alternating between the cost and mixer 

Hamiltonians. Note that since QAOA is a variational 

algorithm, the mixer layers are needed to perturb the quantum 

state between successive cost layers.  The time evolution of 

the quantum state is obtained by exponentiating the sum of the 

cost and mixer Hamiltonians (while a Hamiltonian represents 

the energy of a quantum system, time evolution of the 

quantum state is also governed by a Hamiltonian per 

Schrodinger’s equation). This can be computed to a very good 

approximation by the Trotter-Suzuki formula [6].  It turns out 

that the layers of QAOA correspond to Trotterized segments 

of the time evolution operator for this adiabatic evolution [9].  

 

     Our implementation of QAOA represents each node in the 

cyberattack graph as a qubit. First, we apply Hadamard gates 

to all qubits to create an equal superposition state.  Next, we 



apply p repetitions of alternating cost and mixing layers, 

represented by unitary quantum gates that form the 

exponentiation of the cost and mixer Hamiltonians, as shown 

in figure 1.  

Figure 1: unitary gate for cost (left) and mixer (right)  

 

     The cost function can be re-written with a variable 

reassignment such that it maps to a cost Hamiltonian that can 

be expressed as a weighted sum of Pauli gates, each acting on 

a single qubit [6].  Exponentiating the cost Hamiltonian yields 

controlled single rotation gates [9], which can further be 

decomposed into two CNOT gates and one rotational gate.  

The mixer layer is defined as a sum over all Pauli X operators, 

and the exponentiation of the mixer Hamiltonian yields a 

rotational X gate.  So, the mixer layer just consists of 

rotational X gates applied to each qubit, and parameterized by 

 The QAOA circuit can contain as many layers as we like, 

each characterized by a single parameter for cost and a single 

parameter for mixing. The output is measured in the 

computational z basis, and consists of a series of binary bit 

strings corresponding to possible solutions of Max Cut.  Our 

full quantum circuit is shown in figure 2.  We then use the 

numpy classical optimizer [6] to evaluate the value of the cuts 

and compute its mean, which serves as the cost function value. 

The classical optimizer then updates the parameters so we can 

re-run the quantum circuit, until we converge on a good 

approximate solution. In other words, we can think of the bit 

strings that correspond to the Max Cut of a graph as the 

ground state of a Hamiltonian encoding the cost function. The 

QAOA algorithm arrives at a good approximation to this 

ground state by evolving from a reference state. The reference 

state is given by the ground state of a Hamiltonian that 

couples all 2N states forming the basis of the cost Hamiltonian 

(i.e. the diagonal basis for the cost function, or the Z 

computational basis). We prepare an approximation to the 

ground state of this Hamiltonian, and perform a measurement 

of that state in the Z basis. Performing a measurement on the 

N-qubit quantum state return a bit string corresponding to the 

max cut with high probability.  

 

 
Figure 2 – Qiskit circuit diagram for QAOA with p=1  

III. EXPERIMENTAL RESULTS 

     Our implementation of QAOA utilizes the Qiskit 

optimization library module COBYLA [12]. This is a 

numerical optimization method for constrained problems 

where the derivative of the objective function is not required.  

It directly extends the Variational Quantum Eigensolver 

(VQE) class and inherits VQE’s hybrid organizational 

structure.  Unlike VQE, however, QAOA employs its own 

unique computational approach which is configured using the 

single integer parameter, p, that describes the depth of the 

variational form.   

 

     We validated our implementation of QAOA using a simple 

four node graph with a known Max Cut solution.  We 

performed 100 iterations on random four node graphs to 

ensure that our algorithm consistently yields the expected 

results, before attempting this algorithm on live honeynet data 

graphs. An existing honeynet was used to collect a large 

dataset of real world attack patterns, which were used to study 

both DoS and DDoS attacks.  A a subset of this data 

combining DoS and normal traffic is shown in figures 3 and 4. 

As in prior research [5], we visualize the cyberattack data as a 

hive plot, which has the advantage of not introducing artifacts 

into the data set. In order to test our approach using a near-

term quantum computer, we were limited to about 10 qubits as 

of this writing. The edge weights for DoS traffic are set higher 

than for normal traffic. Edge weights can be assigned in 

several different ways, for example weights may be 

proportional to the trust level associated with the assets being 

accessed, the trust level associated with the incoming data 

source, or the bandwidth of the network connection, among 

others. Figure 4 shows the edge weights for normal traffic set 

equal to 1 and for attack traffic equal to 5. Such a large 

separation is not necessary for our approach to work. We 

determined experimentally that for our implementation, 

QAOA is not very sensitive to the relative values of the edge 

weights; a difference of only 0.01 between normal and attack 

edge weights yielded the same results.  We also verfied the 

graph in Figure 3 to be nonplanar using a depth-first search 

algorithm (i.e. the networks library in Python) based on 

Kuratowski’s Theorem and Wagner’s Theorem [10], so it isn’t 

possible to find a Max Cut solution for this graph in 

polynomial time using classical algorithms.   

 

                     
 

Figure 3 – Sample honeynet graph, mixing DoS traffic (solid 

edges) and normal traffic (dashed edges)  



 

 0 1 2 3 4 5 6 7 8 9 10 11 

0 0 5 1 1 5 5 5 1 5 5 5 1 

1 5 0 0 0 5 5 5 1 5 5 5 1 

2 1 0 0 0 0 0 0 1 0 0 0 0 

3 1 0 0 0 0 0 0 0 0 0 0 1 

4 5 5 0 0 0 0 0 0 0 0 0 0 

5 5 5 0 0 0 0 0 0 0 0 0 0 

6 5 5 0 0 0 0 0 0 0 0 0 0 

7 1 0 1 0 0 0 0 0 0 0 0 0 

8 5 5 0 0 0 0 0 0 0 0 0 0 

9 5 5 0 0 0 0 0 0 0 0 0 0 

10 5 5 0 0 0 0 0 0 0 0 0 0 

11 1 0 0 1 0 0 0 0 0 0 0 0 
 

Figure 4 – edge weights for data in figure 3, with nodes 

identified in bold along the top and left edge 

 

 

Results of the QAOA solution for this graph are shown in 

figure 5. As expected, the result does not isolate all the attack 

nodes for p = 1, but after multiple iterations it successfully 

isolates about 69% of attack nodes. The ability to isolate this 

fraction of attack nodes would be a significant benefit to 

cyberdefenders.  Improvements in the QAOA result are 

expected for higher values of p, with a tradeoff of slightly 

longer execution times. 

 

 
 

Figure 5 – QAOA solution for the hive plot of Figure 3.  

 

Additional experiments were performed for a DDoS attack are 

summarized by the hive plot and QAOA solution in figures 6 

and 7, respectively.  As before, we were able to successfully 

isolate about 68% of the attack nodes (for example, note that 

one of the DDoS nodes is on the wrong side of the cut).   

 

 
Figure 6 – hive plot for DDoS attack data  

 

 
 

Figure 7 – QAOA Max Cut solution for DDoS attack graph 

   

     Due to the near term qubit limitations of our quantum 

computer, a comparison with brute force methods is possible 

to demonstrate the accuracy of our results. In practice, a DoS 

or DDoS attack can consist of several hundred nodes or more, 

with an aggregate bandwidth on the order of terabytes. 

Although quantum computers large enough to analyze such 

attacks are not available as of this writing, we believe that the 

current algorithms will scale to larger quantum hardware as it 

becomes available.  Further, we note that even the largest Dos 

or DDoS attacks evolve from smaller attacks over time, so if 

we can identify an impending attack early enough it would 

still be possible to block the attack using even a small 

quantum computer.  We compared execution time for QAOA 

and brute force approaches using the IBM Q System 

simulator; results are shown in figure 5.   

 

 
Figure 5 – Simulation of QAOA vs brute force 

 

     As expected, the simulation exhausted the memory 

capacity of an x86 server for large numbers of nodes, and 



execution times beyond the range of this graph are unreliable 

(our server crashed after about 2 hours attempting to run larger 

attack simulations).  However, these results predict a 

performance advantage for QAOA over brute force techniques 

for attacks with more than 26 nodes.  Future research with 

larger quantum computers will continue to investigate the 

limitations of this approach.  

IV. SUMMARY AND CONCLUSIONS  

     There is a need for new techniques to mitigate DDoS 

attacks through analysis of honeynet graph data, such as hive 

plots.  Max Cut may be a useful approach to partitioning 

DDoS attack traffic from normal network traffic.  However, 

classical implementations of Max Cut for nonplanar graphs 

require exponential execution time as the number of attack 

nodes increases. There is no classical algorithm with 

polynomial run time that can address this problem.  We 

propose analyzing cyberattack graphs using QAOA, a 

heuristic algorithm which doesn’t have a polynomial runtime 

guarantee, but whose variational form appears to perform well 

on some instances of the problem. In particular, we implement 

QAOA as a layerized quantum circuit based on a Trotterized 

adiabatic process. For a single layer we achieve a significant 

separation between attack and non-attack traffic, and 

performance improves as the number of layers increases. 

Results suggest that the value of QAOA lies in its ability to 

solve Max Cut significantly faster than brute force approaches 

while still yielding an approximate solution that is good 

enough for many practical applications. After validating our 

implementation of QAOA in Qiskit, we demonstrate that 

QAOA can separate attack traffic to a high approximation 

level using real world honeynet DDoS data on available near-

term quantum computers (10 qubits).  Simulations of larger 

attacks suggest that QAOA has a performance advantage over 

brute force classical techniques for 26 nodes or more.   In 

addition to continuing this work as larger quantum computers 

become available and increasing the number of layers and 

shots in the algorithm, future research may include 

investigating custom Hamiltonians, using conditional value-at-

risk methods to speed up the optimization process, warm-

starting QAOA from a classical optimization point, and 

investigating optimal parameter concentrations over different 

problem instances.  
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