Building a Future in SDN

with One Coniroller

OUTLINE

» WHAT IS SDN?

» BENEFITS

> TRADITIONAL NETWORKS AND SDN NETWORKS
» BUILDUING THE LAB

» OPENVSWITCH

> SDN CONTROLLERS

» KVM INTO OPENVSWITCH

» CONCLUSION

What is SDN (Software Defined Networking)?

»Is an emerging architecture that is dynamic,
manageable, cost-effective, and adaptable,
making it ideal for the high-bandwidth,
dynamic nature of today's applications

BENEFITS

» Directly programmable

» Agile

» Centrally Managed

» Pragmatically Configured

» Open standards-based and vendor-neutral

TRADITIONAL NETWORKS AND SDN NETWORKS

POX and/or
FloodLight
Conroller

\ Traditional
Controllers Layer 3 Gateway
Vian 1

HP 3500yI1-48P gaes—an g 802.1q Trunk
or (M))LAG group

Host A Host B
Vian-10 Vian-20
T10.7T00.71T.10/24 10.200.17T.10/24

BUILDING THE LABORATORY

»Laptop

»Ubuntu OS

»VMware

OPENVSWITCH

»Open vSwitch, sometimes abbreviated to
OVS, is a production-quality open source
implementation of a distributed virtual
multilayer switch

USING OPENVSWITCH

» UPDATE/ UPGRADE SYSTEM

sudo apt-get update ---- sudo apt-get upgrade

> INSTALL OPENVSWITCH

Apt-get install openvswitch-datapath-source bridge-utils
Module-assistant auto-install openvswitch-datapath.

Apt-get install openvswitch-brcompat openvswitch-common
» VERIFY INSTALL

Ovs-vsctl show ovs_version: “1.4.0+buil0”

o I IR IY T.-B!‘)‘ JT‘ Most

"thhUﬂtu: ?HNWfftdA# OVs -VSeadt1 ﬂh”mmww

‘*?-ffftif show' Command takes st most ¢
;ruut@mhﬁﬁtu;fhameftaxﬁ sudo ovs-vsct] show
S-VSCtl: 'show' command takes at most B a2
: /home /tax# PS -ea | grep ovs
00:00:00 uwwudb-se rver
00:00:00 wwsdb-server
00:00:00 wws-vswitchd

00:00:00 ows-vswitchd
uﬁtu /home/tax# [

I S S AT

_BO:660 88 ogvs- vsw1tchd 254?
00:00:08 ovs-vswitchd 266
BE: 66 60 ovs- caﬂtrcller

e
b
o

i

|

i

5,
o

J NN
0 W0 D

M
I'“ ®

o
8

l
b
]

4

BRIDGE

» ENABLE BRIDGE COMPATIBILTY
/etc/default/openvswitch-switch
» ADD YOUR BRIDGE

#BRCOMPAT=no

TO and uncomment by removing the #:
BRCOMPAT=yes

Restart OVS

» CHANGE DEFAULT ROUTE
ovs-vsctl add-br br-int

e e PLLE. el /deTalll)

This 1s a POSIX shell fragment . sh .

FORCE_COREFILES: If
FORCE_COREFILES=yes

g
=

'ves' then core files will be enabled.

BRCOMPAT: If 'ves' and the openvswitch-brcom

pat package 1is
Linux bridge compatibility will be enabled.
BRCOMPAT=yes

4 Prev Page QIR

Next Paage IV 1

Cut Text

i

JAVA FLOODLIGHT CONTROLLER

» Floodlight Is an Open SDN Controller

» OpenFlow - works with physical- and virtual- switches that speak the
OpenFlow protocol

» Apache-licensed - lets you use Floodlight for almost any purpose

» Open community - Floodlight is developed by an open community of
developers. We welcome code contributions from active participants
and we'll openly share information on project status, roadmap, bugs, etc

» Easy to Use- Floodlight is drop dead simple to build and run

MAKING USE OF FLOODLIGHT

» SDN CONTROLLER OPTION A; FLOODLIGHT (JAVA)

Sapt-get install build-essential default-jdk ant python-dev eclipse git
Sqgit clone git://qgithub.com/floodlight/floodlight.qit

Scd floodlight

SAnt

Sjava -jar target/floodlight.jar

By default it will binds to port 6633 and all ports e.g. 0.0.0.0/0.0.0.0:6655

git://github.com/floodlight/floodlight.git
git://github.com/floodlight/floodlight.git

ndle

ipelinesink.h.

i:%egveriocket?igelineSink.java:i48}
at arg.jbcss.netty.ch nel.socket.nio.NiOServerSocketP
ServEEiecket{NioServerSocketPi‘elineSink.java:100)
at org.jboss.netty.cha nel.socket.nio. lpelineSink.events
aﬂk{Ni@ServerSocketPipelineSi
at org-jboss.netty.c

at org.jboss.netty.c
)
at org. jboss. ServerBo
otstrap-java:348)
| y.channel.channels.firechannelo

at org. jboss.nett
netty.channel.socket.nio.NioServerS

pen(Channels.java:l?ﬁ)
ocketChannel.<init>(NioS

| at org. jboss.
féerverSocketChannel.java:85)

at org.jboss.netty.channel.

POX CONTROLLER

POX is NOX's younger sibling. At its core, it's a platform for the rapid
development and prototyping of network control software using Python

we're using it as the basis for some of our ongoing work to help bvild the
emerging discipline of Software Defined Networking. We're using it to
explore and prototype distribution, SDN debugging, network virtualization,
controller design, and programming models

http://www.noxrepo.org/support/about-nox/

MAKING USE OF POX

» SDN CONTROLLER OPTION B: POX (PYTHON)
S sudo apt-get install git

S git clone http://github.com/noxrepo/pox

S cd pox

S ./pox.py forwarding.l2_learning

S NOX>

KVM

» It consists of a loadable kernel module, kvm.ko,
that provides the core virtualization infrasiructure
and a processor specific module, kvme-intel.ko or
kvm-amd.ko. KVM also requires a modified QEMU
although work is underway to get the required
changes upstream

INTEGRATING KVM INTO OVS

» ATTACH OPENVSWITCH TO THE CONTROLLER

Sovs-vsctl set-controller br-int tcp:192.168.1.208:6633

» INSTALL KVM AND INTEGRATE INTO OVS

Sapt-get install kvm uml-utilities

» SPIN UP THE VMS: HOST 1, HOST 2, HOST 3

HOST 1

kvm -m 512 -net nic, macaddr=00:00:00:00:cc:10 -net tap,script=/etc/ovs-ifup,downscript=/etc/ovs-ifdown -cdrom ubuntu-12.04-desktop-amdé4.iso
HOST 2

kvm -m 512 -net nic, macaddr=00:11:22:CC:CC:10 -net tap,script=/etc/ovs-ifup,downscript=/etc/ovs-ifdown -cdrom ubuntu-12.04-desktop-amdé4.iso
HOST 3

kvm -m 512 -net nic, macaddr=22:22:22:00:cc:10 -net tap,script=/etc/ovs-ifup,downscript=/etc/ovs-ifdown -cdrom ubuntu-12.04-desktop-amdé4.iso
» GIVEIP'S TO EACH HOSTS

$sudo ifconfig eth0 192.168.1.x netmask 255.255.255.0 (on the VM)

=rminal
root@tax-Satellite-5S50-A: /fhome/Eax

LMl Nnano 2 .2.6 File: etc /ovs-1Tfup

A wwﬁﬂa%w'br—tnt'w

%fsbi.n[ifconfi_g “wl 0.0.0.0 up
ovs-vsctlL add-port S4 swilte:ln) 0

root@tax-Satellite-550-A: /home/tax

___GNU nano 2.2.6 File: etc/ovs-1i

R T e U WY
bnd R i e .

fig %1 ©0.0.0.0 downll

lovs-vsctlL del-port Sdq sl tele 6

CONCLUSION

» Building this lab enables us to modify and create modules
and applications

» No need of openflow hardware
» Using software for modeling and prototyping, so we can

analyze performance and metrics before transitioning to
hardware

FacultyInformation Exchange

ECC ‘14

New Enterprise Computing Minor

21 credits total....

« CMPT120 Introduction to Programming (4 cr)
 CMPT220 Software Development | (4 cr)
e CMPT315 Introduction to z/0OS and Major Subsystems (4 cr)

* Choice of three:
« CMPT316 z/0OS Networking (3 cr)
 CMPT317 z/0S Security (3 cr)
 CMPT451 z/0OS Advanced Topics (3 cr)
* CMPT452 z/0OS RAS and Problem Determination (3 cr)
 CMPT453 z/0S Emerging Technologies (3 cr)
 CMPT454 z/0S Installation (3 cr) (3 cr)
 CMPT455 DB2 for z/0OS Fundamentals (3 cr)
 CMPT456 z/0S Performance Fundamentals (3 cr)

New zOSMF topic module

* z/OSMF is more than just a browser based graphical user interface;

* jtisintelligent - addressing the needs of a diversified workforce, maximizing their
productivity.

» z/OSMF improves productivity, reduces errors and simplifies tasks

* New System Programmer productivity:
* Provides a familiar, modern, browser-based user interface
» Reduces the learning curve with embedded active user assistance in the Ul (e.g., wizards that guide
users through tasks, online help)

* Experienced System Programmer productivity:

* Making functions easier and less error prone
e Reduce time to perform some tasks

« z/0S Management Facility is optional for those who prefer traditional interfaces

New Course: Introduction to Running Linux
Systems on z/VM

Module 1: z/VM Basics

Module 2: z/VM Commands and Structure
Module 3: The z/VM Directory

Module 4: Devices used by Linux Guests
Module 5: Installing Linux on a z/VM Guest
Module 6: Customizing the Linux system
Module 7: Advanced Linux on z/VM
Module 8: z/VM System Administration
Module 9: Defining a Linux Guest on z/VM
Module 10: Basic z/VM Automation for Linux guests
Module 11: z/VM Networking

Module 12: z/VM Performance

Module 13: Cloning Linux systems

Module 14: Setting up the Environment
Final Exam and Project Due.

What's in the Code
Unraveling the Enigma of Legacy Systems

logical solutions©

adjusted to the need

Wouldn’t it be brilliant to have a logical solution to:

IDENTIFY SERVICES:

« Start with your business analysis, identify services from existing work flows and
identify new services not currently provided.
o For the existing services, identify online queries/data entry and batch jobs
o identify the programs associated with each online query/data entry
o identify the business rules as compared to what is running in production
o identify the data files and database tables associated with each online
query/data entry
o identify the data fields associated with each online query/data entry
o identify the programs, data files and database tables, and data fields
associated with each batch job
o identify all other programs that also access or update those data files/tables
« For new services
identify the data files and database tables required for the service
identify the programs that utilize those files and database tables
identify the data fields used and updated by those programs
identify all other programs that also access or update those data files/tables

O O O O

System/programming languages have over time evolved from the 40’ies when the first
“modern” computers were developer and because of the limited speed, memory, and
capabilities, programming was accomplished using low level machine programming
language such as assembler.

Today, most legacy system are written in COBOL, ASSEMBLER, PL/1 and REXX

And the programming evolution continues today. The industry also saw a shift from
procedural languages such as COBOL to object orientated languages such as JAVA

CONCEPT:

SEPARATION OF CONCERNS

Multi-dimensional separation of concerns is an approach to separation of concerns,
supporting construction, evolution and integration of software. Its goals are to enable:

Encapsulation of all kinds of concerns in a software system, simultaneously.
Overlapping and interacting concerns.
On-demand re-modularization.

Separation of concerns is a concept that is at the core of software engineering. It refers
to the ability to identify, encapsulate, and manipulate those parts of software that are
relevant to a particular concern (concept, goal, purpose, etc.). Concerns are the primary
motivation for organizing and decomposing software into manageable and
comprehensible parts. Many kinds of concerns may be relevant to different developers in
different roles, or at different stages of the software lifecycle. Appropriate separation of
concerns has been hypothesized to reduce software complexity and improve
comprehensibility; promote traceability; facilitate reuse, non-invasive adaptation,
customization, and evolution; and simplify component integration.

The term multi-dimensional separation of concerns (MDSOC) refers to flexible and
incremental separation, modularization, and integration of software artifacts based on
any number of concerns. It overcomes limitations of existing mechanisms by permitting
clean separation of multiple, potentially overlapping and interacting concerns
simultaneously. MDSOC promotes reuse, improves comprehension, reduces the impact
of change, eases maintenance and evolution, improves traceability, and opens the door
to system refactoring and reengineering.

The separation allows:

o To allow people to work on individual pieces of the system in isolation;
o To facilitate reusability;

o To ensure the maintainability of a system;

o To add new features easily;

« To enable everyone to better understand the system;

o To allow support for multi-dimensional separation of concerns.

Remember, a dimension of concern is simply an approach to decomposing, organizing,
and structuring software according to concerns of a particular kind. It would be brilliant
to have a logical solution, wouldn't it?

CONCEPTUAL VISUALIZATION:
SEPARATION OF CONCERNS

Big Concern A

small concerns

Small Concern j Small Concern j collectively
represent the big
Small Concern Small Concern concern
—e— e e e c—— c—— —— — e— ——e— e c—— c—— c—— —— — -
Small Small Small Small Small Small
Concern Concern Concern Concern Concern Concern Concern Concern
/
N—

—_——

Coordinates/units
of solution logic that
each
Address (solve)

A small problem

To solve the big
concern, the units are
assembled into a
specific configuration
that allows them to carry
out their solution logic in
a coordinated manner

C_2RC_>

Solves big concern A

The separation of concerns theory encourages us to break down a larger problem into multiple smaller problems
(concerns). This gives us the opportunity to build corresponding pieces of solution logic, each of which solves a small
problem (address an individual concern). These capabilities are part of units that are assembled into a composition
through which they are coordinated to collectively solve the large problem.

A logical solution should be able to be used with the languages shown in the table below.
If one of the objectives is to convert for the legacy code to one of these other languages
- how do you research and document what’s in the legacy code. The same question is
relevant for those needing to change, maintain or even evolve from the legacy code.

Supported Code Flow Chart
Capable
'ASSEMBLER YES NO
'BIND = YES NO
'BMS | YES NO
‘€/C++ | YES YES
cies | YES YES
'‘COBOL | YES YES
'DB2 PREDICATE YES YES
'DB2TABLE YES YES
‘DbL YES NO
'FORTRAN YES YES
'IDMS | YES YES
aMs . YES YES
JAVA. | YES YES
'PASCAL | YES YES
‘PL/A | YES YES
'POWERBUILDER YES * YES
'REXX | YES YES
'‘RPRG = YES NO
'SOA YES YES
'SORT | YES NO
'SYS1.PARMLIB YES NO
XML YES NO
'z/0S3CL YES YES
mainframe

With this evolution it’s important to understand that system are still dependent on code
developed in the past.

The deeper you go the more good things you learn about in your Legacy Systems an
industry that supports 240 billion lines of Cobol code running active business
applications worldwide.

Legacy systems powered the past but they can power the future. They have been tuned
and streamlined over many years, and they most likely perform very well. Leveraging
these existing assets in place, where possible, is the best approach to capitalizing on the
investment and years of work spent perfecting them.

These systems could be the building blocks that fuel your future. So, as you discover
more good things in these systems think about how they can help you reclaim
leadership and leverage when it comes to transforming your business to a new model.

With so many lines of code in production systems how is it that someone can navigate to
what the concern is or what is important?

UNRAVELING THE ENIGMA OF LEGACY SYSTEMS

DO YOU THINK YOU KNOW YOUR LEGACY SYSTEMS?

Do you have a technology to effectively pass your mainframe legacy systems

down through time? Legacy systems have been tuned and streamlined over many
years, and they most likely perform very well. Leveraging these existing assets in place,
where possible, is the best approach to capitalize on your investment and years of work
spent perfecting them.

A logical solution can resolve many of the issues surrounding legacy systems especially
the issue of retiring baby boomers as it relates to passing the knowledge onto a new
generation.

If your systems were developed in the '70s or 80’s, it will be tougher and tougher to find
people with the skills and desire to work on them. Waiting to modernize will only cost
you much more later. If you think programmers are having a hard time determining
what an old COBOL program is doing, consider the difficulty in deciphering hundreds or
even thousands of new interfaces that were built on top of legacy architecture. The
business rules from yesteryear are probably not appropriate for todays’ world.

A logical course of action would be to suggest knowledge transfer, but that will not
completely resolve the situation because of two significant issues.

The first is the applications that were installed on your mainframe decades ago were
consistently tweaked, updated, and enhanced through the years.

It would be impossible to review every change made along the way to pick up exactly
where a COBOL expert with 30 years of experience left off.

This leads to the second issue—experience. It is simply not possible to transfer this
knowledge from the retiring workforce and expect a new team of developers to be as
conversant in COBOL as people who have dedicated their careers to it.

THE LOGICAL SOLUTION FITS INTO THREE MAJOR CATEGORIES:

*ROOT CAUSE ANALYSIS
*PLANNING VISIBILITY
*THE ABILITY TO CREATE AND DRIVE TRANSFORMATION ROADMAPS

However, when the knowledge base leaves, who will maintain and continue development
of these systems?

How will they navigate this vast environment to find and address the areas of concern?
Who is training this next generation?
What tools will you have?

How will impact analysis be performed?

The logical solution being proposed can:

1. Assess the Impact of Change.

Know the full impact for the project before starting a project.

Formulate a cohesive blueprint of the enterprise.

Make business decisions quickly and with resolve.

Prevent teams from going off on parallel and conflicting paths.

Allow developers see outside the box instead of having a limited sphere

of vision.

Provide cross-disciplinary, cross-functional transparency and allow

developers to rapidly visualize interdependent components working on

related projects.

> Prevent stymied efforts to craft and deploy efficient, cost effective
solutions.

> Allow the development teams to zoom in on progressively granular views

of issues and possible solutions without being blurred or off target.

YV VVY

Y

2. Reliability and Maintainability.

» Know the number of modifications, where located and complexity involved.

3. Job Satisfaction.

> Developer will feel in control by having a map and reliable information that guides
their effort.

4. Productivity.

"Know what you're taking on before you’re in the middle of an effort and find significant
unknowns.”

Simultaneously search up to 500+ concerns of interest.

Minimum learning curve

Each developer will be able to work and address modification more effectively.
Estimate Project and work assignments correctly.

Determine the full project impact and scope before starting.

VVVYY

5. Business Logic.

Highlights and identifies business logic implemented in the code.

Code can be extracted down to PC platform.

Code can be flowcharted individually or batched via our 3™ party partner software.
Complexity of the code determined and evaluated via our 3™ party partner
software.

Allows for the editing of business logic graphically in flowchart mode via our 3™
party partner software.

YV VYV

Y

6. Regulatory Requirement Support.

» Document the implemented business logic as opposed to the business rules
believed to be in place.
» Know what is running in production as opposed to what you think is running in
production.

RIPPLE-TRAC is named for the Ripple effect -a series of repercussions or consequences
of change particularly appropriate to the software industry where the effects of one
event set off other unexpected events.

The technology engaged by RIPPLE-TRAC presents the information from the point of
view of the concern - the architect only sees information that is related to the concern
and has control on what concerns should be brought to the forefront or obscured into
the background. The uniqueness of RIPPLE-TRAC is the targeted approach, which we
believe has potential to support longer term refactoring of application logic into reusable
components and services (SOA). RIPPLE-TRAC can also be used as a support tool for
migrating from one platform to another.

RIPPLE-TRAC is a technology for seeing wholes. It is a framework for seeing inter-
relationships rather than things, for seeing patterns for change rather than static
“snapshots.” Legacy complexity can easily undermine confidence and responsibility.
RIPPLE-TRAC is the antidote to this sense of helplessness that many feel as we try to
understand legacy systems. RIPPLE-TRAC is a technology for seeing the “structures”

that underlie complex relationships, and for discerning high from low leverage change.
By seeing wholes we learn how to restructure a relationship.

The RIPPLE-TRAC solution can help your team test software more thoroughly and more
quickly. Manually analyzing your software applications can result in late releases or
inconsistent results. Ad hoc processes for managing your analysis efforts can’t ensure
the kind of quality you need. By automating your more labor-intensive analysis tasks
with RIPPLE-TRAC, you can avoid introducing errors into your analysis. The potential
payoffs include higher quality and faster time to market—for less money.

Rework is much more costly than building the right solution from the start. To avoid
wasteful spending, RIPPLE-TRAC is an effective process for defining, capturing,
prioritizing, and managing modifications to your requirements. RIPPLE-TRAC will ensure
that IT focuses on the required modifications, so you can deliver what the marketplace is
demanding—faster.

MAPPING A COMPONENT TO THE BUSINESS LOGIC

VIA THE OPTIONAL FLOWCHARTER. SLIDE

In summary, this logical solution USING RIPPLE-TRAC may help:

Document and reengineering - what'’s in the code and does it map to the business rules
Impact Analysis — What are the specifics associated with making that change

What are the complexities, resources, and skill needed to make the change happen.
Build a definitive map of what'’s involved.

Use as a training and exploratory tool.

Improve overall project performance and satisfaction

SLIDE FOR NEXT TWO GRAPHICS

§o,:if your organization assets look like the mule trains of yesteryear,

e

then it might be time to streamline your organizations reliability with RIPPLE-T

s (LTI

	IDENTIFY SERVICES:
	SEPARATION OF CONCERNS
	The logical solution being proposed can:
	1. Assess the Impact of Change.
	2. Reliability and Maintainability.
	3. Job Satisfaction.
	4. Productivity.
	5. Business Logic.
	6. Regulatory Requirement Support.

