Collaborative Research: Interdisciplinary Student Activity using ERP to Improve Learning Through Co-curricular Activities Outside of the Classroom

The 2013 National Conference on Enterprise Computing
Marist College, Poughkeepsie, New York

Dr. Jill Anne O’Sullivan
Farmingdale State College
School Of Business
Introduction

1. Identification:
2. Project Overview:
3. Calendar of Activity:
4. Budget:
5. Assessment:
6. Overall benefits of this project:
7. Dissemination (both on campus and off-campus):
8. Future Plans for this project:
Collaboration Introductions

“Improve Learning Through Co-curricular Activities Outside of the Classroom”

- Encourage a collaborative learning experience in an interdisciplinary campus environment.
- Create an opportunity for students to learn in a corporate environment with outside companies and associations.
- Fosters an environment to coordinate and develop a system for a vehicle that can compete worldwide.
“Improve Learning Through Co-curricular Activities Outside of the Classroom”

- Supportive environment includes student orientation, developmental proactive academic advisement, mentoring, support services and interactive activities from local companies, associations and volunteers.
- Increased student engagement (e.g., experiential learning, co-curricular programs)
- Systematic tracking and documentation of student learning and academic progress
- Continuous improvement and strategic planning that is supported by data, assessment & evaluation of student learning and institutional performance
1. Identification

- Amount of Funding Awarded From the Students First Grant at Farmingdale State College = $2500.00
- Amount of Title III Supplemental Funds used, if any (for class field trips, speakers, books, etc.) (materials) (PO)
- +225.00 (Meetings / Lean Books)
- $2725.00 Total
2. Project Objective

Main objective:

- To create a stable environment for students to get hands-on experience in creating, designing, testing and managing the production of this vehicle.

Description of initial proposal

- To combine all of the students in the represented departments to create an opportunity for students to learn in a simulation of a corporate environment.
 - To better prepare students for professional careers
 - Fosters an environment for students to coordinate and develop a system for a vehicle that can compete worldwide.
Primary Activities –

Design, Engineer, Order, Build, Populate ERP, Project Management software, and Market product

- Students create relationships with other students in other disciplines, Engineering, Business, Marketing/Advertising, APICS, ERP and Graphic Design.

- Encourage future leaders in the engineering and business fields.

- Supports activities that challenges students to use their talent and work as a teams to grow as a professional.
Student population involved

Spans six different disciplines, which include:

- Automotive Engineering
- Mechanical Engineering
- Electrical Engineering
- Computer Engineering
- Visual Arts
- Business Management
 - Marketing/Advertising
 - ERP
 - Project Management
Each discipline had a detailed set of objectives to accomplish

Automotive engineering students

- Designing powertrain,
- Designing system to properly run a turbocharger off of the engine.
- They will be able to collaborate with mechanical and electrical engineering students to create the most efficient design for all components of the vehicle.
Each discipline had a detailed set of objectives to accomplish

- The Computer engineers utilizing software to run diagnostics on the car and figure out how to improve upon inefficiencies within the vehicle.

- Visual Arts students create a website and all of the appealing characteristics of the body of the vehicle.

- The Business Management students in charge of managing the
 - Enterprise Resource Planning (ERP) system.
 - Project Management
 - Marketing Advertising Teams were asked to create advertisements for this project including where, when and which venues to use including social media.
 - Doing cost analysis in a best effort to make the project as economically efficient as possible.
CHASSIS DESIGN

Original Design
- **Weight:** 85 lbs
- **Main hoop deflection:** .985 in
- **Front roll hoop deflection:** .454 in
- **Side impact structure:** .256 in
- **Front bulkhead:** 2.484 in
- **Shoulder harness bar:** 1.352 in
- **Off axis:** 2.325 in

Final Chassis
- **Weight:** 77.1 lbs
- **Main hoop deflection:** .243 in
- **Front roll hoop deflection:** .227 in
- **Side impact structure:** .173 in
- **Front bulkhead:** .194 in
- **Shoulder harness bar:** .488 in
- **Off axis:** .106 in

Pipe Wall Thickness
- **.049in**
- **.065in**
- **.095in**
- **.120in**
- **.156in**
Chassis Requirements/Rules
MACHINING / MITERING / NOTCHING

STEP 1: MITER

STEP 2: NOTCH BY INDEXING TUBE 90.000000 DEG +/- .030 FROM MITER POSITION

STEP 3: NOTCH BY INDEXING TUBE 100.6200 DEG +/- .030 FROM PREVIOUS NOTCH

LEFT AND RIGHT TUBES WILL BE EXACT OPPOSITE

ANGLE: XXX +/- .030
OVERALL TUBE LENGTH: XXX +/-.030/-0
MITER/NOTCH LENGTH: XXX +/-.030

Back Bulkhead Right & Left
Engineering

A 100% Anti-Dive & 100% Anti-Squat by Convergent Axes. Convergence Points Lie on Lines Drawn Between Tire Contact Point & Sprung Mass Center of Gravity

B 30% Anti-Squat by Convergence Axes. Line Drawn Between Tire Contact Point and Convergence Point Intersects Perpendicular From cg at 30% of cg Height. Same Principle Applies to Anti-Dive

Once front bulkhead, front hoop, main hoop, and rear bulkhead are welded to the bottom of the chassis, the rest of the tubes will be fit and function with grinding when appropriate to weld in place

STEP 1: 1

Place 90 deg blocks on location on fixture and rank chassis assembly against it, then weld at numbered locations
Front Bulkhead

Deflection: .173 in
Max Stress: 49540 psi
Factor of Safety: 2.28

Bulkhead Off-Axis

Deflection: .194 in
Max Stress: 78050 psi
Factor of Safety: 1.45
The fabrication of the welding jig was completed thanks to the use of GKN facility and their funds supplied to us. The program, design, and assembly was all completed by student members of FSC Engineering.
Gifted ERP for Formula SAE Collaboration Project - Infor Visual

<table>
<thead>
<tr>
<th>Sales</th>
<th>Purchasing</th>
<th>Inventory</th>
<th>Engineering & Manufacturing</th>
<th>Scheduling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orders</td>
<td>Orders</td>
<td>Inventory</td>
<td>EDI’s</td>
<td>Concurrent Schedulers</td>
</tr>
<tr>
<td>Customer Inquiry</td>
<td>Vendor Inquiry</td>
<td>Material Planning Window</td>
<td>Manufacturing Window</td>
<td>Scheduling Window</td>
</tr>
<tr>
<td>Shipping Entry</td>
<td>Purchase Receipt Entry</td>
<td>Maintenance</td>
<td>Work Order Tracker</td>
<td>Throughput Window</td>
</tr>
<tr>
<td>Billing</td>
<td>Services</td>
<td>Traceability</td>
<td>Labor Ticket Entry</td>
<td>Resource Delay</td>
</tr>
<tr>
<td></td>
<td>Receiving Report</td>
<td>Physical Inventory Count</td>
<td>Visual Quality</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cost Simulation</td>
<td>VISUAL Quality</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inventory Valuation Report</td>
<td>Reporting</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financials</td>
<td>Executive</td>
<td>Administration</td>
<td>User Applications</td>
<td></td>
</tr>
<tr>
<td>Ledger</td>
<td>Executive Information System</td>
<td>Users and Employees</td>
<td>Notepad</td>
<td></td>
</tr>
<tr>
<td>Receivables</td>
<td>Exec. Information System Host</td>
<td>Maintenance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payables</td>
<td>Database</td>
<td>Tool and Utilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cash</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Admin and Utilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payroll</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ERP Manufacturing Window of Chassis
BOM / Spec of Chassis

Manufacturing Instructions:
- N/C will manufacture the base plate
- Tool room will fabricate details as per assigned sketches
- Tool room will assemble the details

<table>
<thead>
<tr>
<th>QTY</th>
<th>MATERIAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>BUSHING</td>
<td>CLB-8000</td>
</tr>
<tr>
<td>2</td>
<td>DOWEL PIN</td>
<td>1/2" DIA X 4.75 LONG</td>
</tr>
<tr>
<td>2</td>
<td>BULLET NOSE DOWEL</td>
<td>CL-4-GND</td>
</tr>
<tr>
<td>1</td>
<td>ALUMINUM</td>
<td>1.75" X 3.25" X 4.25"</td>
</tr>
<tr>
<td>1</td>
<td>ASSEMBLY</td>
<td>90 DEG BLOCK</td>
</tr>
<tr>
<td>1</td>
<td>ALUMINUM</td>
<td>1" X 1.75" X 3.25"</td>
</tr>
<tr>
<td>1</td>
<td>ALUMINUM</td>
<td>1.75" X 3.25" X 4.25"</td>
</tr>
<tr>
<td>1</td>
<td>ASSEMBLY</td>
<td>90 DEG BLOCK</td>
</tr>
<tr>
<td>1</td>
<td>ALUMINUM</td>
<td>1" X 36" X 96"</td>
</tr>
</tbody>
</table>

Tolerances:
- XXX +/- .030
- XXXX +/- .010
- ANS +/- .000

Tool: QTY: 0

Chassis Fixture
ERP Manufacturing Window of Chassis
ERP Costing BOM and WIP

<table>
<thead>
<tr>
<th>Date</th>
<th>Transaction ID</th>
<th>Sub ID</th>
<th>Seq #</th>
<th>Type</th>
<th>Qty Dovend</th>
<th>Qty Delivered</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/10/2003</td>
<td>1234567890</td>
<td>12345</td>
<td>123</td>
<td>ABC</td>
<td>100</td>
<td>0</td>
<td>D123</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Description</th>
<th>Quantity</th>
<th>Est Unit Cost</th>
<th>Est Material</th>
<th>Est Labor</th>
<th>Est Burden</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>100-A100-100-100</td>
<td>100</td>
<td>20.00</td>
<td>5.00</td>
<td>15.00</td>
<td>2.00</td>
</tr>
</tbody>
</table>

- 3D Render: Visual representation of BOM and WIP details.
- Diagram: Flowchart showing the process of ERP costing.
Master Scheduling and MRP
Infor VISUAL DesignLink works with applications such as AutoCAD® from Autodesk to seamlessly integrate engineering operations with your manufacturing operations. **
3. Calendar of Activity: Timeline of Tasks and Schedules
3. Calendar of Activity: Timeline Tasks and Schedules

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Duration</th>
<th>Start</th>
<th>Finish</th>
<th>Predecessors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Car</td>
<td>0 days</td>
<td>Mon 1/7/13</td>
<td>Mon 1/7/13</td>
<td>2,3,4,5</td>
</tr>
<tr>
<td>Powertrain</td>
<td>1 day</td>
<td>Tue 10/23/12</td>
<td>Tue 10/23/12</td>
<td></td>
</tr>
<tr>
<td>Suspension</td>
<td>1 day</td>
<td>Tue 10/23/12</td>
<td>Tue 10/23/12</td>
<td></td>
</tr>
<tr>
<td>Brakes</td>
<td>1 day</td>
<td>Tue 10/23/12</td>
<td>Tue 10/23/12</td>
<td></td>
</tr>
<tr>
<td>Chassis Complete</td>
<td>1 day</td>
<td>Mon 1/7/13</td>
<td>Mon 1/7/13</td>
<td>6</td>
</tr>
<tr>
<td>Move welding to FSC</td>
<td>1 day</td>
<td>Fri 1/4/13</td>
<td>Fri 1/4/13</td>
<td>7</td>
</tr>
<tr>
<td>Weld Chassis complete</td>
<td>1 day</td>
<td>Thu 1/3/13</td>
<td>Thu 1/3/13</td>
<td>8,9,10</td>
</tr>
<tr>
<td>Setup</td>
<td>5 days</td>
<td>Tue 10/23/12</td>
<td>Mon 10/29/12</td>
<td></td>
</tr>
<tr>
<td>Weld Chassis</td>
<td>20 days</td>
<td>Wed 11/28/12</td>
<td>Wed 2/2/13</td>
<td>10,14</td>
</tr>
<tr>
<td>Move Alpha to WM</td>
<td>1 day</td>
<td>Tue 11/27/12</td>
<td>Tue 11/27/12</td>
<td>11,12,13</td>
</tr>
<tr>
<td>Machine Pipes</td>
<td>25 days</td>
<td>Tue 10/23/12</td>
<td>Mon 11/26/12</td>
<td></td>
</tr>
<tr>
<td>Move FSC to Alpha</td>
<td>1 day</td>
<td>Tue 10/23/12</td>
<td>Tue 10/23/12</td>
<td></td>
</tr>
<tr>
<td>Engineering Drawings</td>
<td>15 days</td>
<td>Tue 10/23/12</td>
<td>Mon 11/12/12</td>
<td></td>
</tr>
<tr>
<td>Move GKN to WM</td>
<td>1 day</td>
<td>Fri 10/26/12</td>
<td>Fri 10/26/12</td>
<td>15,16</td>
</tr>
<tr>
<td>Jig Assembly</td>
<td>1 day</td>
<td>Tue 10/23/12</td>
<td>Tue 10/23/12</td>
<td></td>
</tr>
<tr>
<td>Jig Machining</td>
<td>1 day</td>
<td>Thu 10/25/12</td>
<td>Thu 10/25/12</td>
<td>17,18</td>
</tr>
<tr>
<td>Details</td>
<td>2 days</td>
<td>Tue 12/23/12</td>
<td>Wed 12/24/12</td>
<td></td>
</tr>
<tr>
<td>Plate</td>
<td>1 day</td>
<td>Tue 10/23/12</td>
<td>Tue 10/23/12</td>
<td></td>
</tr>
</tbody>
</table>
3. Calendar of Activity: Timeline Tasks and Schedules

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Duration</th>
<th>Start</th>
<th>Finish</th>
<th>Predecessors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Car</td>
<td>0 days</td>
<td>Mon 1/7/13</td>
<td>Mon 1/7/13</td>
<td>2,3,4,5</td>
</tr>
<tr>
<td>Powertrain</td>
<td>1 day</td>
<td>Tue 10/23/12</td>
<td>Tue 10/23/12</td>
<td></td>
</tr>
<tr>
<td>Suspension</td>
<td>1 day</td>
<td>Tue 10/23/12</td>
<td>Tue 10/23/12</td>
<td></td>
</tr>
<tr>
<td>Brakes</td>
<td>1 day</td>
<td>Tue 10/23/12</td>
<td>Tue 10/23/12</td>
<td></td>
</tr>
<tr>
<td>Chassis Complete</td>
<td>1 day</td>
<td>Mon 1/7/13</td>
<td>Mon 1/7/13</td>
<td>6</td>
</tr>
<tr>
<td>Move welding to FSC</td>
<td>1 day</td>
<td>Fri 1/4/13</td>
<td>Fri 1/4/13</td>
<td>7</td>
</tr>
<tr>
<td>Weld Chassis complete</td>
<td>1 day</td>
<td>Thu 1/3/13</td>
<td>Thu 1/3/13</td>
<td>8,9,10</td>
</tr>
<tr>
<td>Setup</td>
<td>5 days</td>
<td>Tue 10/23/12</td>
<td>Mon 10/29/12</td>
<td></td>
</tr>
<tr>
<td>Weld Chassis</td>
<td>20 days</td>
<td>Wed 12/28/12</td>
<td>Wed 1/2/13</td>
<td>10,14</td>
</tr>
<tr>
<td>Move Alpha to WM</td>
<td>1 day</td>
<td>Tue 11/27/12</td>
<td>Tue 11/27/12</td>
<td>11,12,13</td>
</tr>
<tr>
<td>Machine Pipes</td>
<td>25 days</td>
<td>Tue 10/23/12</td>
<td>Mon 11/26/12</td>
<td></td>
</tr>
<tr>
<td>Move FSC to Alpha</td>
<td>1 day</td>
<td>Tue 10/23/12</td>
<td>Tue 10/23/12</td>
<td></td>
</tr>
<tr>
<td>Engineering Drawings</td>
<td>15 days</td>
<td>Tue 10/23/12</td>
<td>Tue 11/12/12</td>
<td></td>
</tr>
<tr>
<td>Move KKN to WM</td>
<td>1 day</td>
<td>Fri 10/26/12</td>
<td>Fri 10/26/12</td>
<td>15,16</td>
</tr>
<tr>
<td>Jig Assembly</td>
<td>1 day</td>
<td>Tue 10/25/12</td>
<td>Tue 10/25/12</td>
<td></td>
</tr>
<tr>
<td>Jig Machining</td>
<td>1 day</td>
<td>Thu 10/25/12</td>
<td>Thu 10/25/12</td>
<td>17,18</td>
</tr>
<tr>
<td>Details</td>
<td>2 days</td>
<td>Tue 10/23/12</td>
<td>Wed 10/24/12</td>
<td></td>
</tr>
<tr>
<td>Plate</td>
<td>1 day</td>
<td>Tue 10/23/12</td>
<td>Tue 10/23/12</td>
<td></td>
</tr>
</tbody>
</table>
Time management

- Weekly / Monthly sessions arranged for members to meet up, collaborate and create a strategy to complete tasks.
- This has taught students how to coordinate their time while also encouraging communication between people of different educational backgrounds.
- Scheduled meetings with outside industry sponsors and supporters has allowed students exposure to industry best practices in real time.
FSC Formula SAE Engineering Plan
WORK BREAKDOWN STRUCTURES
WORK Detail
The project has already received support and sponsorships which is listed below

- **GKN Aerospace Monitor** - Material, funds, and use of facility
- **Superior Welding, Inc.** - $250
- **Welding Metallurgy, Inc.** - Welding and tube bending
- **Inter Molds, Inc.** – Use of facility
- **JSS Performance** – Donation of turbo and Suzuki DR-350 motorcycle
- **ASME** - $1000
- **Fleischer Tube Distributors Corporation** - Material Discount
- **Metal Connections** - Material Discount
- **Long Island Color & Design** - Sponsor Decals for Car
- **Gundy Powder Coating** – Painting of components and chassis
- **Alpha Manufacturing Corporation** – Machining of components
- **XXX**
- **Arkwin Industries** LEAN WORKSHOP
- **Synergy Resources**-Visual ERP Hosting and product training
- **Infor** –Visual ERP Gifted Database
- **Project Management** - Herb Shiller- guidance and instruction
- **APICS NYC/LI** Support and Promotion
4. Budget:

Referencing the record of spending tracked by Title III offices, what were the main expenditures? PO material next slide

- Was the amount of the grant award adequate for this project?
 Yes it has helped to move the project forward
Purchase Orders

Vendor: YARDE METALS INC.
Address: 6092-F O.B. Origin
City: Hauppauge
State: NY
Zip: 11788
Contact: 631-231-0087
Date: 05/10/12
Account: 914H
Total Qty Rec’d: 0
Balance Due: 1
Delivery: 06/01/12
PO Number: C105127

Item	**Unit Price**	**Total Price**
1 x 36" x 96" Aluminum plate | $900.0000 | $900.00

Bill To: SUNY Farmingdale
Address: SUNY Farmingdale
City: Farmingdale
State: NY
Zip: 11735
Contact: 631-234-2300
Date: 09/28/12

Ship To: SUNY Farmingdale SAE Team
Address: SUNY Farmingdale SAE Team
City: Farmingdale
State: NY
Zip: 11735
Contact: 631-234-2300
Date: 09/28/12

Qt	Description	Price U of	Ext Price
12 | 4130 SMLS Tube 1.000 X .049 X 240.00 | $78.57 PC | $942.88
1 | 4130 SMLS Tube 1.000 X .065 X 240.00 | $103.00 PC | $106.00
1 | 4130 SMLS Tube 1.000 X .065 X 12.000 | $35.00 PC | $35.00
1 | 4130 SMLS Tube 1.000 X .055 X 240.00 | $150.23 PC | $160.23
1 | 4130 SMLS Tube 1.000 X .120 X 240.00 | $115.81 PC | $115.81
1 | 4130 SMLS Tube 1.000 X .156 X 240.00 | $208.39 PC | $208.39
1 LOT | CUTTING CHARGE | $250.00 LOT | $250.00

Subtotal: $1,820.29
Freight: $0.00
Tax: $0.00
Total: $1,820.29
5. **Assessment:**

A brief statement of the objectives and anticipated outcomes that were set forth in my original grant proposal

- Assessment methodologies employed (quantitative and qualitative) – what, how, when, why?
- Results – lessons learned. Were the anticipated outcomes achieved? Were other objectives accomplished?
- Closing the circle – Did the Assessment feedback lead you to make alterations in your project? Has this project prompted you to do things differently in other courses or co-curricular activities?
- Plans for on-going collection and longitudinal analysis of evidence of student outcomes.
Results – A brief statement of what was accomplished

- Student collaboration
- Industry support participation and collaboration.
- Associations (APICS NYC/LI) support manufacturing supported promoted and dedication
- Additional workshops because of Student presentations-Lean
- Industry SME’s (subject matter experts) as Volunteers
- Student better understanding of different functional areas responsibilities in a company
- Local company interest in helping students
 - Financially, use of facility, parts
- Student job offers and employment
Overall benefits of this project:

The real or potential benefits of these activities for FSC students, and for the College.

- Encouraged a collaborative learning experience in an inter-disciplinary campus environment.
- Created an opportunity for students to learn in a corporate environment with outside companies and associations involvement.
- Fostered an environment to coordinate and develop a system for a vehicle that can compete worldwide.
- Supportive environment included student orientation, developmental proactive academic advisement, mentoring, support services and interactive activities from local companies, associations and volunteers.
- Increased student engagement (e.g., experiential learning, co-curricular programs)
- Systematic tracking and documentation of student learning and academic progress
- Continuous improvement and strategic planning that is supported by data, assessment & evaluation of student learning and institutional performance
7. Dissemination (both on campus and off-campus):

Publications, presentations, or other to date that have resulted from this project.
- Next Slide

Student who have co-authored and co-presented*.
Specific plans for future dissemination of results*
Papers/Journals/Presentations

- 17th World Multi-Conference on Systemics, Cybernetics and Informatics: WMSCI 2013
- 7th International Technology, Education and Development Conference, INTED2013
- ECC 5th Annual ECC National Conference Marist* Joint Writing between Students and Dr. O’Sullivan*

- APICS NYC/LI Professional Development Meetings (PDM)
 - January 2012 and 2013 Presentation by Students*
 - February 2013 Presentation by Students*
 - April 2013 Participation Exhibit*

Pictures on Slide 19
APICS NYC/LI PDM Presentations
Lean Workshops

- Every Saturday morning over summer 9-12
- Taught by Lean Experts at Arkwin Industry in their facility
- Used Text: Hitchhikers Guide to Lean

Students receiving Certificates for Lean Workshop at APICS PDM
8. Future Plans for this project:

- Will you continue this project beyond the year of funding? If so, explain. Do you anticipate making changes from the original plan? Why? Those individuals should identify the semesters/years in which they intend to repeat the course.

- Next Slide
Current Proposal

INTERNSHIP OPPORTUNITY FOR SCIENCE, TECHNOLOGY AND SOCIETY MAJORS
(STS401W – 3 credits)

• Summer, Fall and Spring Semesters students will spend – on average – 10-12 hours each week working independently and also with team members on the project. Some group meetings will likely take place on Saturdays or in the evenings so as to accommodate schedules. Students earning internship credit in the Summer session will have a more compressed schedule.

• Writing-intensive course to encourage joint writing in Journals, Conference proceedings etc.
Formula SAE at Farmingdale State College Team

Engineering Club
- President: Helder Santiago
- Vice President: Michael Reis
- Secretary: Anthony DiBono
- Treasurer: Marco Santiago

APICS Students / ERP
- President: Kanav Khosla
- VP Steve Brodesser
- Treasurer Nick Amennd
Special Thanks

- Formula SAE Students Team
- APICS NYC/LI Chapter
 - Dr. Jill O’Sullivan - President
 - Board of Directors
- Arkwin Industries
 - Dennis Goldensohn - Lean Leader
 - Duke Logan - Lean Instructor
- Synergy Resources - Gene Caiola Gifted Hosted ERP
- Info - Gifted Visual ERP System
- Industry Volunteer Herb Schiller Program Management
Questions?

Collaborative Research: Dr. Jill Anne O’Sullivan

osullija@farmingdale.edu Cell# 516 984-7122

president@apicsnyc-li.org