Making Sense of The APl Economy

By Joseph Gulla, Ph.D.
joseph.g.gulla@gmail.com

LINKEDIN profile at https://www.linkedin.com/in/joseph-gulla-ph-d-ba5b9515/

Abstract

In this paper, the author presents a 360-degree view of modern Application
Programming Interfaces (APIs) that focus innovation and entrepreneurship often
with a concentration on enterprise computing. The paper gives an introduction to
the API economy then explains the classification of APIs with a particular focus on
microservices. Leading API management software companies are identified and
important API technologies are explored including REST and SOAP, as well as open
source tools and open standards and protocols.

Introduction to the APl Economy

According to Gartner (Welcome to the API Economy, 2016), the API economy is an
enabler for turning a business or organization into a platform. How is this possible?
According to Gartner, the API economy is a set of business models and channels
based on secure access of functionality and exchange of data. So, to answer the
question--new models and channels make this possible.

In new ways, APIs make it simpler to integrate and connect people, places, systems,
applications and data. Many businesses are implementing APl management
products to make what they already have, often called systems of record, more
readily available to new systems of engagement including mobile devices and cloud

services.

Classification of APIs by Type

The author has devised a simple method of classification. O-APIs refers to the
“older” types of APIs like those for access methods and performance management.
Two examples or types of the older kind of APIs are summarized in Table 1.

Table 1. O-APIs

Category | Description Example
A-type Access The Queued Sequential Access Method (QSAM) was
Methods released in 0S/360 offering device independence: to the

extent possible, the same API calls are used for different
devices (Queued Sequential, 2017). The Virtual Storage
Access Method (VSAM) is in the same class as QSAM.

Copyright © 2017 by Joseph Gulla

Application The Application Response Measurement (ARM) API is
Performance | focused on application response measurement and has

the function “arm_init” that is used to define an
application. It must be made before any other ARM API
calls related to that application like arm_start and
arm_end (Application Response, 2017).

The N-APIs classification pertains to “new” types of APL. New can best be classified
as those that arose since the advent of the worldwide web. Three examples or types
of the newer kind of APIs are summarized in Table 2.

Table 2. N-APIs

Category Description Example

D-type Data access Local Government, Climate, Ecosystems
and Agriculture are examples of datasets
available on data.gov. The data is available in
many forms like .xIs and .tar for human viewing
or program use.

$-type Accept online and PayPal payments & Square online and in-

mobile payments person payments are example of financial APIs.
M-type Application program | These programs are created from a variety of

in the form of a
microservice

API Management tools producing a new kind of
application running on top of the legacy
applications that is non-disruptive.

Special Focus on the M-type API

This type of API has come about since the creation of cloud computing. M-type
means microservices, which is a kind of small data program. These small data
programs are grouped into applications. These applications are used by companies
to generate revenue, lower costs, improve efficiency and respond to competitive
pressures. These programs are created in an integrated development environment
(IDE) and they provide a connection between the legacy world (called the systems
of record) and the new world of engagement These microservices APIs are
surrounded by support capabilities like a management console, security, analytics
and logging, that is used for governance. The most complete APl Management
programs have a full life-cycle approach that is needed because these microservices
APIs are applications that need to be handled as company assets.

Copyright © 2017 by Joseph Gulla

APIs and Microservices

There are two views of microservices. One view characterizes it as an architectural
style where the other view uses the term microservice to describe the data
programs created with APl Management software products.

An Architectural Style

Through adoption of the microservices architectural style, companies use many
very small modules, communicating using lightweight protocols that combine to
provide a service. They are part of an application like order processing, supporting a
business area like add a new customer, for a specific scenario like verify customer
address. The microservices can be and are often used in multiple scenarios.

A Kind of Program

Many API Management software suppliers are providing an IDE and other key
components like a management console and analytics, in support of the creation of
small data applications they call microservices. These data applications can be used
stand-alone or combined into applications by making important data and processes
available in new ways without disrupting the system of record.

The Role View of APIs

Figure 1 depicts the role of APIs, which is to leverage existing enterprise assets to
unlock your business capabilities. This view aligns with the Gartner vision and has
this main theme—unlock your business capabilities by leveraging your existing
assets. This is a compelling idea for many companies.

0 &8 »~ @& S 6o

Build your Mobile Strategies Socialize Monetize Internet of Things Enter New
Community Digital Assets Markets Quickly
E New Channels 6 ; Connected
Websites and Devices API Economy Partners Vehicles
Unlock your Business Capablities

A View of
the Role of
APIs oo

Leverage Existing Enterprise Assets

Enterprise Service Bus

ESB Existing Systems Host of Adapters Cloud Integration

Figure 1. The Role of APIs (Fiorano API Management, n.d.)

Copyright © 2017 by Joseph Gulla 3

Who are the Leading APl Management Software Companies?

Figure 2, below, is a consolidation of the highly regarded API management products.
Included are Leaders, Visionaries and Strong Performers identified by Forrester and
Gartner. IDC uses the word Representational in its software taxonomy document.

Akana Leader

Apigee R Leader Leader
Axway R S Leader
CA Technologies R Leader Leader
IBM R Leader Leader
Mulesoft R S Leader
Red Hat (3scale) S Leader
TIBCO Mashery R S Leader

IDC: Representative vendor Forrester?: Leaders, Strong Performer, Contenders & Challengers Gartner’: Leaders, Visionaries, Niche players & Challengers

Figure 2. Leading API Management Software Companies

How the APl Management Systems are Organized to Get Work Done

The common components--IDE or developer portal, connectors, gateways, security,
monetization, analytics and operations support tools—are common in the context of
a build and run lifecycle. Figure 3, below from a recent BLOG post shows the
features of many API products. Design Time includes Data Modeling, Interface
Modeling and Registry & Repository whereas Run Time includes API Management
Solution, Identity Stack, Monitoring, DevOps Tools, Logging, and Application
Infrastructure (Broeckelmann, 2017).

Copyright © 2017 by Joseph Gulla 4

oA
Data Modeling nterface Modeling
Q agnity ORACLE' B apigee ®
s N\ Y
APl Management Solution m
/ 'ﬁ
D ¢ Port AD R Mana it 6
Ve OPE J i A 2alew \ ’,‘ [A
' . © git
apigee WS@, akanQ || ||
M) Mulesoft 3% Microsoft G éiascale || @i
technalagies r
2 3
: < c
5 1 e
= JIStr PoOSsI =
&) TRM akana 5 a
= — J o]
ORACLE Identity Stack ‘\)
Nagios' || - Maven || ..ocerain
Jser £ A
e | S | A |
, Al
9 n dQ docker ~N
R Application Infrastructure Microsoft:
Qpmevics| | TRI IJ NET £ cHEF
J

-

Figure 3. The Tools of APl Management—The Full Stack

A Product Example -- Components of IBM API Connect

Rather than a logical view of API management software, lets look at a leading
product’s components. This is the actual list of components for IBM API Connect
(API Connect Components, 2017). The list includes--

1.

Cloud Management Console that provides an administrator interface mainly to
manage/monitor (add, start, stop, delete, get usage report, etc.) servers and to
register the components that will be used at runtime.

API Designer provides an API developer toolkit, installed on workstations to
create and secure LoopBack applications. A LoopBack application is a Node.js
application that supports the creation of REST APIs based on data model
definitions.

Management Server is the API developer’s interface to manage and secure their
existing APIs.

Developer Portal is for application developers where published APIs will be
referenced, described and can be tested.

API Gateway is used to enforce APIs security or functional policies like JSON
schema validation and JWT generation. All registered applications send their
requests to the API Gateway to access the APIs.

Liberty Collective are server clusters containing one Liberty controller and
multiple Liberty members. Liberty collectives are only used if there is a
LoopBack application or Microgateway to run. It constitutes the Node.js runtime
environment. Liberty servers can be run on Linux on z.

Copyright © 2017 by Joseph Gulla 5

Most API Management products have gateways although their function isn’t always
exactly the same. They also have servers to run and manage the APIs and facilities
for design and development of APIs. They often interface with an Enterprise Service
Bus, if it is present, allowing companies to make use of their existing integration and
SOA investments.

Importance of RESTful Web Services and Other Internet Technologies

Many API products use Web services like REST and SOAP. Roy Fielding is the father
of REST as it was the subject of his dissertation called Architectural Styles and the
Design of Network-based Software Architectures (Fielding, 2000).

Here are a few key points from the abstract of his dissertation--"REST emphasizes
scalability of component interactions, generality of interfaces, independent
deployment of components, and intermediary components to reduce interaction
latency, enforce security, and encapsulate legacy systems. [describe the software
engineering principles guiding REST and the interaction constraints chosen to retain
those principles, contrasting them to the constraints of other architectural styles.
Finally, I describe the lessons learned from applying REST to the design of the
Hypertext Transfer Protocol and Uniform Resource Identifier standards, and from
their subsequent deployment in Web client and server software."

Figure 4, below, makes it straightforward to see some of the main points of REST.
REST is a client/server architecture allowing for scalability. The server can interact
with many clients at the same time because it is the client’s responsibility to handle
context. Not storing context on the server is one element of REST’s architectural
style.

: : Application .
Application D e API HTTP Client
N
/entrypoint
/collectionl -
—_— Jresourcel - Client App
- - -
/resource2 REST Library
to_resource() /co/llectlonz 1 application/x-collection (optional)
from_resource() resource application/x-resource .
[resrouce2 P HTTP Library
J
Application
Data Model Resource Model
[Server | Client

Figure 4. RESTful Architectural Style (Rocheleau, n.d.)

XML and JSON with REST

XML and JSON come up when discussing REST. They are simply ways of serializing
data. XML is more flexible and with many standards designed around, some feel that
it is too complex and long-winded. JSON is more straightforward and defines a few
basic structures in simple ways. This makes it easy to use for informal data

structures (JSON, REST, SOAP, WSDL, 2013).

Copyright © 2017 by Joseph Gulla 6

SOAP versus REST

SOAP and REST are often compared but they are quite different. SOAP is a protocol
whereas REST is an architectural style. REST APIs access a resource for data
whereas SOAP APIs perform an operation. REST permits many different data
formats like plain text, HTML, XML, and JSON whereas SOAP only uses XML. With
SOAP and REST, security is handled differently. SOAP requires more bandwidth
whereas REST requires fewer resources depending on the processing that is needed
to support the APL. SOAP has an advantage over REST in that SOAP has Atomicity,
Consistency, Isolation and Durability, called ACID, which is a set of properties of
database transactions. These characteristics help ensure accurate and recoverable
database updates (SOAP versus REST, n.d.).

Role of Other Open Protocols, Standards and Tools

Some API management products are distributed as open source but many use open
source components for logging, security, and other key support functions. The
usefulness of open source protocols, standards and tools is as building blocks for
these API products. The brief list below in Table 3, is taken from an internal
document called OpenLegacy Terms and Definitions. [t contains a sample of open
protocols, standards and tools used by OpenLegacy APl management.

Table 3. Open Protocols, Standards and Tools used by OpenLegacy

Item Description

Apache A reliable, fast and flexible logging framework written in Java.

Log4j

Trail File An XML representation of in/out screens.

oAuth Open protocol to allow secure authorization for REST APIs, web,
mobile and desktop applications.

EhCache Widely used open source Java distributed cache engine.

Angular Open source development platform for web applications.

Freemarker | Open source, Java-based template engine.

Templates A structured format, created by Freemarker, into which data is
entered when generating entities.

Special Focus on APl with Enterprise Computing

In 2015, IBM announced z/0S Connect Enterprise Edition, a strategic API gateway
into z/0S. This gateway is a configurable, high throughput interface into CICS, IMS,
DB2 and WebSphere Application Server. This product is used to make APIs that
utilize data from CICS and IMS applications while requiring no changes to the
application’s underlying COBOL or PL/1 code.

Since z/0S connect is a gateway, the most important thing it does is help transform

applications written in one architectural style to a different one. It is very well
documented so you can understand exactly what to do even if the tasks are not

Copyright © 2017 by Joseph Gulla 7

always native to your skillset. Figure 5 shows the inputs and outputs handled by
z/0S Connect (IBM z/0S Connect, 2015).

z/0S Connect Enterprise Edition V2.0 provides a way to host RESTful APIs on z/OS and
provide access to the valuable business data that resides there. It provides a focal
point for managing and controlling RESTful calls coming into mainframe environment:

——| 2/0S Connect
EE V2.0

Figure 5. The Role of z/0S Connect EE (Excellent 2 Pager, 2016)

Steps to Create an API for a CICS Transaction

There are four main task areas for creating an API using z/0S Connect (Creating an
API, 2016):

1. Generate Bindings for the Application

Using a supplied JCL job stream, generate the bindings, data definitions like a
commarea copybook, which will allow z/0S Connect to call your CICS application.
This generates a Service Archive File (SAR) file.

2. Import the SAR File into the Tooling

This allows the z/0S Connect tooling to display the fields that are part of your
application interface. The first step is to create a new z/0S Connect EE API project.
To do this select File - New Project. In the list scroll down and expand ‘z/0S Connect
Enterprise Edition’ and select z/OS Connect EE API Project. Click next. The detailed
actions are easy to follow in the Creating an API Article referenced above.

3. Map the API
Define the Uniform Resource Identifiers (URIs) that make up the API, you can then
map fields from the URIs to the fields within the application interface.

4. Deploy the API

Once your API is ready you need to deploy it. The z/0S Connect EE tooling has the
ability to deploy your API directly to CICS. This is done through a service in the
runtime that is listening on the same HTTP port from which your API will be
executed.

Copyright © 2017 by Joseph Gulla 8

Conclusion

It is interesting and useful that APIs have been reinvented and brought forth in a
completely new way. The old APIs, access methods like QSAM and VSAM, are vital
and still in use. The new APIs have found their use in the data-sharing setting to
save costs and improve efficiency.

The microservices APIs are supplementing applications in many businesses to
satisfy needs unmet by existing applications and systems. The microservices APIs
are making their impact by providing powerful levels of integration, in an
application context, without the need for changes to the existing systems of record.

Microservices API programs are not without their challenges. Just like conventional
application assets, you design and build the API programs then they are deployed,
managed, made highly available as necessary, backed up and eventually retired.
These disciplines must be given the proper level of attention in order for the APIs to
reliability carry out their purpose.

References

API Connect Components. 2017. Accessed in May 2017 at
https://www.ibm.com /support/knowledgecenter/en/SSMNED 5.0.0/com.ibm.apic.

overview.doc/capim_overview_apiconnectcomponents.html

Application Response Measurement. 2017. Accessed in May 2017 at
https://en.wikipedia.org/wiki/Application Response Measurement

Broeckelmann, R. 2017. The Tools of API Management—The Full Stack. Accessed
May 2017 from www.linkedin.com/pulse/tools-api-management-full-stack-robert-
broeckelmann?trk=v-feed.

Creating an API from a CICS application. 2016. Accessed June 2017 from
https://developer.ibm.com/mainframe/docs/getting-started /how-to-expose-a-
cics-service/creating-an-api-from-a-cics-application/

Fielding, R. 2000. Architectural Styles and the Design of Network-based Software
Architectures. Accessed May 2017 from
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Fiorano API Management. n.d. Accessed May 2017 from
http://hkwiseco.com/fiorano-api-management-2/

Getting Started with IBM API Connect Concepts and Architecture Guide. 2016.
Accessed May 2017 from
http://www.redbooks.ibm.com/redpapers/pdfs/redp5349.pdf

Copyright © 2017 by Joseph Gulla 9

IBM z/0S Connect Enterprise Edition V2 Technical Overview. 2015. Accessed May
2017 from
https://www.slideshare.net/UkRobJones/zos-connect-enterprise-edition-v2000-
technical-overview

JSON, REST, SOAP, WSDL, and SOA: How do they all link together. 2013. Accessed
May 2017 from
https://stackoverflow.com/questions/16626021/json-rest-soap-wsdl-and-soa-
how-do-they-all-link-together

Queued Sequential Access Method. 2017. Accessed in May 2017 at
https://en.wikipedia.org/wiki/Queued_Sequential Access Method

Rocheleau, Jake. n.d. The Basics of REST and RESTful API Development. Accessed in
May 2017 at http://www.hongkiat.com/blog/rest-restful-api-dev/

SOAP vs. REST: A Look at Two Different API Styles. n.d. Accessed May 2017 from
https://www.upwork.com /hiring/development/soap-vs-rest-comparing-two-apis/

Tommaseo, L. 2016. Excellent 2 Pager on z/0S Connect. Accesses May 2017 from
https://www.slideshare.net/LuigiTommaseo/excellent-2-pager-on-zos-connect-
ent-edition

Welcome to the API Economy. 2016. Gartner Research. Accessed May 2017 from
http://www.gartner.com/smarterwithgartner/welcome-to-the-api-economy/

Copyright © 2017 by Joseph Gulla 10

