
Copyright	©	2017	by	Joseph	Gulla	
	

Making	Sense	of	The	API	Economy	
By	Joseph	Gulla,	Ph.D.		
joseph.g.gulla@gmail.com	
	
LINKEDIN	profile	at	https://www.linkedin.com/in/joseph-gulla-ph-d-ba5b9515/	

Abstract	
In	this	paper,	the	author	presents	a	360-degree	view	of	modern	Application	
Programming	Interfaces	(APIs)	that	focus	innovation	and	entrepreneurship	often	
with	a	concentration	on	enterprise	computing.	The	paper	gives	an	introduction	to	
the	API	economy	then	explains	the	classification	of	APIs	with	a	particular	focus	on	
microservices.	Leading	API	management	software	companies	are	identified	and	
important	API	technologies	are	explored	including	REST	and	SOAP,	as	well	as	open	
source	tools	and	open	standards	and	protocols.		

Introduction	to	the	API	Economy	
According	to	Gartner	(Welcome	to	the	API	Economy,	2016),	the	API	economy	is	an	
enabler	for	turning	a	business	or	organization	into	a	platform.	How	is	this	possible?	
According	to	Gartner,	the	API	economy	is	a	set	of	business	models	and	channels	
based	on	secure	access	of	functionality	and	exchange	of	data.	So,	to	answer	the	
question--new	models	and	channels	make	this	possible.	
	
In	new	ways,	APIs	make	it	simpler	to	integrate	and	connect	people,	places,	systems,	
applications	and	data.	Many	businesses	are	implementing	API	management	
products	to	make	what	they	already	have,	often	called	systems	of	record,	more	
readily	available	to	new	systems	of	engagement	including	mobile	devices	and	cloud	
services.		

Classification	of	APIs	by	Type	
The	author	has	devised	a	simple	method	of	classification.	O-APIs	refers	to	the	
“older”	types	of	APIs	like	those	for	access	methods	and	performance	management.	
Two	examples	or	types	of	the	older	kind	of	APIs	are	summarized	in	Table	1.		
	
Table	1.	O-APIs	
Category	 Description	 Example	

A-type	 Access	
Methods	

The	Queued	Sequential	Access	Method	(QSAM)	was	
released	in	OS/360	offering	device	independence:	to	the	
extent	possible,	the	same	API	calls	are	used	for	different	
devices	(Queued	Sequential,	2017).	The	Virtual	Storage	
Access	Method	(VSAM)	is	in	the	same	class	as	QSAM.		

	

Copyright	©	2017	by	Joseph	Gulla	
	

2	

P-type	 Application	
Performance	

The	Application	Response	Measurement	(ARM)	API	is	
focused	on	application	response	measurement	and	has	
the	function	“arm_init”	that	is	used	to	define	an	
application.	It	must	be	made	before	any	other	ARM	API	
calls	related	to	that	application	like	arm_start	and	
arm_end	(Application	Response,	2017).	

	
The	N-APIs	classification	pertains	to	“new”	types	of	API.	New	can	best	be	classified	
as	those	that	arose	since	the	advent	of	the	worldwide	web.	Three	examples	or	types	
of	the	newer	kind	of	APIs	are	summarized	in	Table	2.		
	
Table	2.	N-APIs	
Category	 Description	 Example	

D-type	 Data	access		 Local	Government,	Climate,	Ecosystems		
and	Agriculture	are	examples	of	datasets	
available	on	data.gov.	The	data	is	available	in	
many	forms	like	.xls	and	.tar	for	human	viewing	
or	program	use.		

$-type	 Accept	online	and	
mobile	payments	

PayPal	payments	&	Square	online	and	in-
person	payments	are	example	of	financial	APIs.		

M-type	 Application	program	
in	the	form	of	a	
microservice	

These	programs	are	created	from	a	variety	of	
API	Management	tools	producing	a	new	kind	of	
application	running	on	top	of	the	legacy	
applications	that	is	non-disruptive.		

	

Special	Focus	on	the	M-type	API	
This	type	of	API	has	come	about	since	the	creation	of	cloud	computing.	M-type	
means	microservices,	which	is	a	kind	of	small	data	program.	These	small	data	
programs	are	grouped	into	applications.	These	applications	are	used	by	companies	
to	generate	revenue,	lower	costs,	improve	efficiency	and	respond	to	competitive	
pressures.	These	programs	are	created	in	an	integrated	development	environment	
(IDE)	and	they	provide	a	connection	between	the	legacy	world	(called	the	systems	
of	record)	and	the	new	world	of	engagement		These	microservices	APIs	are	
surrounded	by	support	capabilities	like	a	management	console,	security,	analytics	
and	logging,	that	is	used	for	governance.	The	most	complete	API	Management	
programs	have	a	full	life-cycle	approach	that	is	needed	because	these	microservices	
APIs	are	applications	that	need	to	be	handled	as	company	assets.			

Copyright	©	2017	by	Joseph	Gulla	
	

3	

APIs	and	Microservices	
There	are	two	views	of	microservices.	One	view	characterizes	it	as	an	architectural	
style	where	the	other	view	uses	the	term	microservice	to	describe	the	data	
programs	created	with	API	Management	software	products.		

An	Architectural	Style		
Through	adoption	of	the	microservices	architectural	style,	companies	use	many	
very	small	modules,	communicating	using	lightweight	protocols	that	combine	to	
provide	a	service.	They	are	part	of	an	application	like	order	processing,	supporting	a	
business	area	like	add	a	new	customer,	for	a	specific	scenario	like	verify	customer	
address.	The	microservices	can	be	and	are	often	used	in	multiple	scenarios.		

A	Kind	of	Program	
Many	API	Management	software	suppliers	are	providing	an	IDE	and	other	key	
components	like	a	management	console	and	analytics,	in	support	of	the	creation	of	
small	data	applications	they	call	microservices.	These	data	applications	can	be	used	
stand-alone	or	combined	into	applications	by	making	important	data	and	processes	
available	in	new	ways	without	disrupting	the	system	of	record.	

The	Role	View	of	APIs	
Figure	1	depicts	the	role	of	APIs,	which	is	to	leverage	existing	enterprise	assets	to	
unlock	your	business	capabilities.	This	view	aligns	with	the	Gartner	vision	and	has	
this	main	theme—unlock	your	business	capabilities	by	leveraging	your	existing	
assets.	This	is	a	compelling	idea	for	many	companies.		
		

	
Figure	1.	The	Role	of	APIs	(Fiorano	API	Management,	n.d.)	

Copyright	©	2017	by	Joseph	Gulla	
	

4	

Who	are	the	Leading	API	Management	Software	Companies?	
Figure	2,	below,	is	a	consolidation	of	the	highly	regarded	API	management	products.	
Included	are	Leaders,	Visionaries	and	Strong	Performers	identified	by	Forrester	and	
Gartner.	IDC	uses	the	word		Representational	in	its	software	taxonomy	document.		
	

	
	
Figure	2.	Leading	API	Management	Software	Companies	

How	the	API	Management	Systems	are	Organized	to	Get	Work	Done			
The	common	components--IDE	or	developer	portal,	connectors,	gateways,	security,	
monetization,	analytics	and	operations	support	tools—are	common	in	the	context	of	
a	build	and	run	lifecycle.	Figure	3,	below	from	a	recent	BLOG	post	shows	the	
features	of	many	API	products.	Design	Time	includes	Data	Modeling,	Interface	
Modeling	and	Registry	&	Repository	whereas	Run	Time	includes	API	Management	
Solution,	Identity	Stack,	Monitoring,	DevOps	Tools,	Logging,	and	Application	
Infrastructure	(Broeckelmann,	2017).		
	

Copyright	©	2017	by	Joseph	Gulla	
	

5	

	
Figure	3.	The	Tools	of	API	Management — The	Full	Stack		

A	Product	Example	--	Components	of	IBM	API	Connect	
Rather	than	a	logical	view	of	API	management	software,	lets	look	at	a	leading	
product’s	components.	This	is	the	actual	list	of	components	for	IBM	API	Connect	
(API	Connect	Components,	2017).	The	list	includes--	
1. Cloud	Management	Console	that	provides	an	administrator	interface	mainly	to	

manage/monitor	(add,	start,	stop,	delete,	get	usage	report,	etc.)	servers	and	to	
register	the	components	that	will	be	used	at	runtime.	

2. API	Designer	provides	an	API	developer	toolkit,	installed	on	workstations	to	
create	and	secure	LoopBack	applications.	A	LoopBack	application	is	a	Node.js	
application	that	supports	the	creation	of	REST	APIs	based	on	data	model	
definitions.			

3. Management	Server	is	the	API	developer’s	interface	to	manage	and	secure	their	
existing	APIs.			

4. Developer	Portal	is	for	application	developers	where	published	APIs	will	be	
referenced,	described	and	can	be	tested.			

5. API	Gateway	is	used	to	enforce	APIs	security	or	functional	policies	like	JSON	
schema	validation	and	JWT	generation.	All	registered	applications	send	their	
requests	to	the	API	Gateway	to	access	the	APIs.	

6. Liberty	Collective	are	server	clusters	containing	one	Liberty	controller	and	
multiple	Liberty	members.	Liberty	collectives	are	only	used	if	there	is	a	
LoopBack	application	or	Microgateway	to	run.	It	constitutes	the	Node.js	runtime	
environment.	Liberty	servers	can	be	run	on	Linux	on	z.		
	

Copyright	©	2017	by	Joseph	Gulla	
	

6	

Most	API	Management	products	have	gateways	although	their	function	isn’t	always	
exactly	the	same.	They	also	have	servers	to	run	and	manage	the	APIs	and	facilities	
for	design	and	development	of	APIs.	They	often	interface	with	an	Enterprise	Service	
Bus,	if	it	is	present,	allowing	companies	to	make	use	of	their	existing	integration	and	
SOA	investments.	

Importance	of	RESTful	Web	Services	and	Other	Internet	Technologies	
Many	API	products	use	Web	services	like	REST	and	SOAP.	Roy	Fielding	is	the	father	
of	REST	as	it	was	the	subject	of	his	dissertation	called	Architectural	Styles	and	the	
Design	of	Network-based	Software	Architectures	(Fielding,	2000).		
	
Here	are	a	few	key	points	from	the	abstract	of	his	dissertation--"REST	emphasizes	
scalability	of	component	interactions,	generality	of	interfaces,	independent	
deployment	of	components,	and	intermediary	components	to	reduce	interaction	
latency,	enforce	security,	and	encapsulate	legacy	systems.	I	describe	the	software	
engineering	principles	guiding	REST	and	the	interaction	constraints	chosen	to	retain	
those	principles,	contrasting	them	to	the	constraints	of	other	architectural	styles.	
Finally,	I	describe	the	lessons	learned	from	applying	REST	to	the	design	of	the	
Hypertext	Transfer	Protocol	and	Uniform	Resource	Identifier	standards,	and	from	
their	subsequent	deployment	in	Web	client	and	server	software."	
	
Figure	4,	below,	makes	it	straightforward	to	see	some	of	the	main	points	of	REST.	
REST	is	a	client/server	architecture	allowing	for	scalability.	The	server	can	interact	
with	many	clients	at	the	same	time	because	it	is	the	client’s	responsibility	to	handle	
context.	Not	storing	context	on	the	server	is	one	element	of	REST’s	architectural	
style.		
	

	
Figure	4.	RESTful	Architectural	Style		(Rocheleau,	n.d.)		

XML	and	JSON	with	REST	
XML	and	JSON	come	up	when	discussing	REST.	They	are	simply	ways	of	serializing	
data.	XML	is	more	flexible	and	with	many	standards	designed	around,	some	feel	that	
it	is	too	complex	and	long-winded.	JSON	is	more	straightforward	and	defines	a	few	
basic	structures	in	simple	ways.	This	makes	it	easy	to	use	for	informal	data	
structures	(JSON,	REST,	SOAP,	WSDL,	2013).		

Copyright	©	2017	by	Joseph	Gulla	
	

7	

SOAP	versus	REST	
SOAP	and	REST	are	often	compared	but	they	are	quite	different.	SOAP	is	a	protocol	
whereas	REST	is	an	architectural	style.	REST	APIs	access	a	resource	for	data	
whereas	SOAP	APIs	perform	an	operation.	REST	permits	many	different	data	
formats	like	plain	text,	HTML,	XML,	and	JSON	whereas	SOAP	only	uses	XML.	With	
SOAP	and	REST,	security	is	handled	differently.	SOAP	requires	more	bandwidth	
whereas	REST	requires	fewer	resources	depending	on	the	processing	that	is	needed	
to	support	the	API.	SOAP	has	an	advantage	over	REST	in	that	SOAP	has	Atomicity,	
Consistency,	Isolation	and	Durability,	called	ACID,	which	is	a	set	of	properties	of	
database	transactions.	These	characteristics	help	ensure	accurate	and	recoverable	
database	updates	(SOAP	versus	REST,	n.d.).		

Role	of	Other	Open	Protocols,	Standards	and	Tools	
Some	API	management	products	are	distributed	as	open	source	but	many	use	open	
source	components	for	logging,	security,	and	other	key	support	functions.	The	
usefulness	of	open	source	protocols,	standards	and	tools	is	as	building	blocks	for	
these	API	products.	The	brief	list	below	in	Table	3,		is	taken	from	an	internal	
document	called	OpenLegacy	Terms	and	Definitions.	It	contains	a	sample	of	open	
protocols,	standards	and	tools	used	by	OpenLegacy	API	management.		
	
Table	3.	Open	Protocols,	Standards	and	Tools	used	by	OpenLegacy	

Item	 Description	
Apache	
Log4j		

A	reliable,	fast	and	flexible	logging	framework	written	in	Java.	

Trail	File		 An	XML	representation	of	in/out	screens.	
oAuth		 Open	protocol	to	allow	secure	authorization	for	REST	APIs,	web,	

mobile	and	desktop	applications.	
EhCache		 Widely	used	open	source	Java	distributed	cache	engine.	
Angular		 Open	source	development	platform	for	web	applications.	
Freemarker		 Open	source,	Java-based	template	engine.	 	
Templates	 A	structured	format,	created	by	Freemarker,	into	which	data	is	

entered	when	generating	entities.	
	

Special	Focus	on	API	with	Enterprise	Computing		
In	2015,	IBM	announced	z/OS	Connect	Enterprise	Edition,	a	strategic	API	gateway	
into	z/OS.	This	gateway	is	a	configurable,	high	throughput	interface	into	CICS,	IMS,	
DB2	and	WebSphere	Application	Server.	This	product	is	used	to	make	APIs	that	
utilize	data	from	CICS	and	IMS	applications	while	requiring	no	changes	to	the	
application’s	underlying	COBOL	or	PL/1	code.		
	
Since	z/OS	connect	is	a	gateway,	the	most	important	thing	it	does	is	help	transform	
applications	written	in	one	architectural	style	to	a	different	one.	It	is	very	well	
documented	so	you	can	understand	exactly	what	to	do	even	if	the	tasks	are	not	

Copyright	©	2017	by	Joseph	Gulla	
	

8	

always	native	to	your	skillset.	Figure	5	shows	the	inputs	and	outputs	handled	by	
z/OS	Connect	(IBM	z/OS	Connect,	2015).	
		

	
Figure	5.	The	Role	of	z/OS	Connect	EE		(Excellent	2	Pager,	2016)	

Steps	to	Create	an	API	for	a	CICS	Transaction			
There	are	four	main	task	areas	for	creating	an	API	using	z/OS	Connect	(Creating	an	
API,	2016):		

	1.	Generate	Bindings	for	the	Application	
Using	a	supplied	JCL	job	stream,	generate	the	bindings,	data	definitions	like	a	
commarea	copybook,	which	will	allow	z/OS	Connect	to	call	your	CICS	application.	
This	generates	a	Service	Archive	File	(SAR)	file.	

2.	Import	the	SAR	File	into	the	Tooling	
This	allows	the	z/OS	Connect	tooling	to	display	the	fields	that	are	part	of	your	
application	interface.	The	first	step	is	to	create	a	new	z/OS	Connect	EE	API	project.	
To	do	this	select	File	–	New	Project.	In	the	list	scroll	down	and	expand	‘z/OS	Connect	
Enterprise	Edition’	and	select	z/OS	Connect	EE	API	Project.	Click	next.	The	detailed	
actions	are	easy	to	follow	in	the	Creating	an	API	Article	referenced	above.		

3.	Map	the	API	
Define	the	Uniform	Resource	Identifiers	(URIs)	that	make	up	the	API,	you	can	then	
map	fields	from	the	URIs	to	the	fields	within	the	application	interface.	

4.	Deploy	the	API	
Once	your	API	is	ready	you	need	to	deploy	it.	The	z/OS	Connect	EE	tooling	has	the	
ability	to	deploy	your	API	directly	to	CICS.	This	is	done	through	a	service	in	the	
runtime	that	is	listening	on	the	same	HTTP	port	from	which	your	API	will	be	
executed.		

Copyright	©	2017	by	Joseph	Gulla	
	

9	

Conclusion	
It	is	interesting	and	useful	that	APIs	have	been	reinvented	and	brought	forth	in	a	
completely	new	way.	The	old	APIs,	access	methods	like	QSAM	and	VSAM,	are	vital	
and	still	in	use.	The	new	APIs	have	found	their	use	in	the	data-sharing	setting	to	
save	costs	and	improve	efficiency.		
	
The	microservices	APIs	are	supplementing	applications	in	many	businesses	to	
satisfy	needs	unmet	by	existing	applications	and	systems.	The	microservices	APIs	
are	making	their	impact	by	providing	powerful	levels	of	integration,	in	an	
application	context,	without	the	need	for	changes	to	the	existing	systems	of	record.		
	
Microservices	API	programs	are	not	without	their	challenges.	Just	like	conventional	
application	assets,	you	design	and	build	the	API	programs	then	they	are	deployed,	
managed,	made	highly	available	as	necessary,	backed	up	and	eventually	retired.	
These	disciplines	must	be	given	the	proper	level	of	attention	in	order	for	the	APIs	to	
reliability	carry	out	their	purpose.		
	

References	
API	Connect	Components.	2017.	Accessed	in	May	2017	at		
https://www.ibm.com/support/knowledgecenter/en/SSMNED_5.0.0/com.ibm.apic.
overview.doc/capim_overview_apiconnectcomponents.html	
	
Application	Response	Measurement.	2017.		Accessed	in	May	2017	at	
https://en.wikipedia.org/wiki/Application_Response_Measurement	
	
Broeckelmann,	R.	2017.	The	Tools	of	API	Management — The	Full	Stack.	Accessed	
May	2017	from	www.linkedin.com/pulse/tools-api-management-full-stack-robert-
broeckelmann?trk=v-feed.					
		
Creating	an	API	from	a	CICS	application.	2016.	Accessed	June	2017	from	
https://developer.ibm.com/mainframe/docs/getting-started/how-to-expose-a-
cics-service/creating-an-api-from-a-cics-application/	
	
Fielding,	R.	2000.	Architectural	Styles	and	the	Design	of	Network-based	Software	
Architectures.	Accessed	May	2017	from		
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm	
	
Fiorano	API	Management.	n.d.	Accessed	May	2017	from		
http://hkwiseco.com/fiorano-api-management-2/	
	
Getting	Started	with	IBM	API	Connect	Concepts	and	Architecture	Guide.	2016.	
Accessed	May	2017	from	
http://www.redbooks.ibm.com/redpapers/pdfs/redp5349.pdf	

Copyright	©	2017	by	Joseph	Gulla	
	

10	

IBM	z/OS	Connect	Enterprise	Edition	V2	Technical	Overview.	2015.	Accessed	May	
2017	from		
https://www.slideshare.net/UkRobJones/zos-connect-enterprise-edition-v2000-
technical-overview	

JSON,	REST,	SOAP,	WSDL,	and	SOA:	How	do	they	all	link	together.	2013.	Accessed	
May	2017	from	
https://stackoverflow.com/questions/16626021/json-rest-soap-wsdl-and-soa-
how-do-they-all-link-together	
	
Queued	Sequential	Access	Method.	2017.		Accessed	in	May	2017	at	
https://en.wikipedia.org/wiki/Queued_Sequential_Access_Method	

Rocheleau,	Jake.	n.d.	The	Basics	of	REST	and	RESTful	API	Development.	Accessed	in	
May	2017	at	http://www.hongkiat.com/blog/rest-restful-api-dev/	
	
SOAP	vs.	REST:	A	Look	at	Two	Different	API	Styles.	n.d.	Accessed	May	2017	from	
https://www.upwork.com/hiring/development/soap-vs-rest-comparing-two-apis/	
	
Tommaseo,	L.	2016.	Excellent	2	Pager	on	z/OS	Connect.	Accesses	May	2017	from	
https://www.slideshare.net/LuigiTommaseo/excellent-2-pager-on-zos-connect-
ent-edition	
	
Welcome	to	the	API	Economy.	2016.	Gartner	Research.	Accessed	May	2017	from	
http://www.gartner.com/smarterwithgartner/welcome-to-the-api-economy/	
	
	

